Saturday, April 28, 2007

How Biofuels Could Starve the Poor

I'm fucking with you subliminally.Thanks to high oil prices and hefty subsidies, corn-based ethanol is now all the rage in the United States. But it takes so much supply to keep ethanol production going that the price of corn -- and those of other food staples -- is shooting up around the world. To stop this trend, and prevent even more people from going hungry, Washington must conserve more and diversify ethanol's production inputs.

By C. Ford Runge and Benjamin Senauer
From Foreign Affairs, May/June 2007


The Ethanol Bubble
In 1974, as the United States was reeling from the oil embargo imposed by the Organization of Petroleum Exporting Countries, Congress took the first of many legislative steps to promote ethanol made from corn as an alternative fuel. On April 18, 1977, amid mounting calls for energy independence, President Jimmy Carter donned his cardigan sweater and appeared on television to tell Americans that balancing energy demands with available domestic resources would be an effort the "moral equivalent of war." The gradual phaseout of lead in the 1970s and 1980s provided an additional boost to the fledgling ethanol industry. (Lead, a toxic substance, is a performance enhancer when added to gasoline, and it was partly replaced by ethanol.) A series of tax breaks and subsidies also helped. In spite of these measures, with each passing year the United States became more dependent on imported petroleum, and ethanol remained marginal at best.

Now, thanks to a combination of high oil prices and even more generous government subsidies, corn-based ethanol has become the rage. There were 110 ethanol refineries in operation in the United States at the end of 2006, according to the Renewable Fuels Association. Many were being expanded, and another 73 were under construction. When these projects are completed, by the end of 2008, the United States' ethanol production capacity will reach an estimated 11.4 billion gallons per year. In his latest State of the Union address, President George W. Bush called on the country to produce 35 billion gallons of renewable fuel a year by 2017, nearly five times the level currently mandated.

The push for ethanol and other biofuels has spawned an industry that depends on billions of dollars of taxpayer subsidies, and not only in the United States. In 2005, global ethanol production was 9.66 billion gallons, of which Brazil produced 45.2 percent (from sugar cane) and the United States 44.5 percent (from corn). Global production of biodiesel (most of it in Europe), made from oilseeds, was almost one billion gallons.

The industry's growth has meant that a larger and larger share of corn production is being used to feed the huge mills that produce ethanol. According to some estimates, ethanol plants will burn up to half of U.S. domestic corn supplies within a few years. Ethanol demand will bring 2007 inventories of corn to their lowest levels since 1995 (a drought year), even though 2006 yielded the third-largest corn crop on record. Iowa may soon become a net corn importer.

The enormous volume of corn required by the ethanol industry is sending shock waves through the food system. (The United States accounts for some 40 percent of the world's total corn production and over half of all corn exports.) In March 2007, corn futures rose to over $4.38 a bushel, the highest level in ten years. Wheat and rice prices have also surged to decade highs, because even as those grains are increasingly being used as substitutes for corn, farmers are planting more acres with corn and fewer acres with other crops.

This might sound like nirvana to corn producers, but it is hardly that for consumers, especially in poor developing countries, who will be hit with a double shock if both food prices and oil prices stay high. The World Bank has estimated that in 2001, 2.7 billion people in the world were living on the equivalent of less than $2 a day; to them, even marginal increases in the cost of staple grains could be devastating. Filling the 25-gallon tank of an SUV with pure ethanol requires over 450 pounds of corn -- which contains enough calories to feed one person for a year. By putting pressure on global supplies of edible crops, the surge in ethanol production will translate into higher prices for both processed and staple foods around the world. Biofuels have tied oil and food prices together in ways that could profoundly upset the relationships between food producers, consumers, and nations in the years ahead, with potentially devastating implications for both global poverty and food security.

The Oil and Biofuel Economy
In the United States and other large economies, the ethanol industry is artificially buoyed by government subsidies, minimum production levels, and tax credits. High oil prices over the past few years have made ethanol naturally competitive, but the U.S. government continues to heavily subsidize corn farmers and ethanol producers. Direct corn subsidies equaled $8.9 billion in 2005. Although these payments will fall in 2006 and 2007 because of high corn prices, they may soon be dwarfed by the panoply of tax credits, grants, and government loans included in energy legislation passed in 2005 and in a pending farm bill designed to support ethanol producers. The federal government already grants ethanol blenders a tax allowance of 51 cents per gallon of ethanol they make, and many states pay out additional subsidies.

Consumption of ethanol in the United States was expected to reach over 6 billion gallons in 2006. (Consumption of biodiesel was expected to be about 250 million gallons.) In 2005, the U.S. government mandated the use of 7.5 billion gallons of biofuels per year by 2012; in early 2007, 37 governors proposed raising that figure to 12 billion gallons by 2010; and last January, President Bush raised it further, to 35 billion gallons by 2017. Six billion gallons of ethanol are needed every year to replace the fuel additive known as MTBE, which is being phased out due to its polluting effects on ground water.

The European Commission is using legislative measures and directives to promote biodiesel, produced mainly in Europe, made from rapeseeds and sunflower seeds. In 2005, the European Union produced 890 million gallons of biodiesel, over 80 percent of the world's total. The EU's Common Agricultural Policy also promotes the production of ethanol from a combination of sugar beets and wheat with direct and indirect subsidies. Brussels aims to have 5.75 percent of motor fuel consumed in the European Union come from biofuels by 2010 and 10 percent by 2020.

Brazil, which currently produces approximately the same amount of ethanol as the United States, derives almost all of it from sugar cane. Like the United States, Brazil began its quest for alternative energy in the mid-1970s. The government has offered incentives, set technical standards, and invested in supporting technologies and market promotion. It has mandated that all diesel contain two percent biodiesel by 2008 and five percent biodiesel by 2013. It has also required that the auto industry produce engines that can use biofuels and has developed wide-ranging industrial and land-use strategies to promote them. Other countries are also jumping on the biofuel bandwagon. In Southeast Asia, vast areas of tropical forest are being cleared and burned to plant oil palms destined for conversion to biodiesel.

This trend has strong momentum. Despite a recent decline, many experts expect the price of crude oil to remain high in the long term. Demand for petroleum continues to increase faster than supplies, and new sources of oil are often expensive to exploit or located in politically risky areas. According to the U.S. Energy Information Administration's latest projections, global energy consumption will rise by 71 percent between 2003 and 2030, with demand from developing countries, notably China and India, surpassing that from members of the Organization for Economic Cooperation and Development by 2015. The result will be sustained upward pressure on oil prices, which will allow ethanol and biodiesel producers to pay much higher premiums for corn and oilseeds than was conceivable just a few years ago. The higher oil prices go, the higher ethanol prices can go while remaining competitive -- and the more ethanol producers can pay for corn. If oil reaches $80 per barrel, ethanol producers could afford to pay well over $5 per bushel for corn.

With the price of raw materials at such highs, the biofuel craze would place significant stress on other parts of the agricultural sector. In fact, it already does. In the United States, the growth of the biofuel industry has triggered increases not only in the prices of corn, oilseeds, and other grains but also in the prices of seemingly unrelated crops and products. The use of land to grow corn to feed the ethanol maw is reducing the acreage devoted to other crops. Food processors who use crops such as peas and sweet corn have been forced to pay higher prices to keep their supplies secure -- costs that will eventually be passed on to consumers. Rising feed prices are also hitting the livestock and poultry industries. According to Vernon Eidman, a professor emeritus of agribusiness management at the University of Minnesota, higher feed costs have caused returns to fall sharply, especially in the poultry and swine sectors. If returns continue to drop, production will decline, and the prices for chicken, turkey, pork, milk, and eggs will rise. A number of Iowa's pork producers could go out of business in the next few years as they are forced to compete with ethanol plants for corn supplies.

Proponents of corn-based ethanol argue that acreage and yields can be increased to satisfy the rising demand for ethanol. But U.S. corn yields have been rising by a little less than two percent annually over the last ten years, and even a doubling of those gains could not meet current demand. As more acres are planted with corn, land will have to be pulled from other crops or environmentally fragile areas, such as those protected by the Department of Agriculture's Conservation Reserve Program.

In addition to these fundamental forces, speculative pressures have created what might be called a "biofuel mania": prices are rising because many buyers think they will. Hedge funds are making huge bets on corn and the bull market unleashed by ethanol. The biofuel mania is commandeering grain stocks with a disregard for the obvious consequences. It seems to unite powerful forces, including motorists' enthusiasm for large, fuel-inefficient vehicles and guilt over the ecological consequences of petroleum-based fuels. But even as ethanol has created opportunities for huge profits for agribusiness, speculators, and some farmers, it has upset the traditional flows of commodities and the patterns of trade and consumption both inside and outside of the agricultural sector.

This craze will create a different problem if oil prices decline because of, say, a slowdown in the global economy. With oil at $30 a barrel, producing ethanol would no longer be profitable unless corn sold for less than $2 a bushel, and that would spell a return to the bad old days of low prices for U.S. farmers. Undercapitalized ethanol plants would be at risk, and farmer-owned cooperatives would be especially vulnerable. Calls for subsidies, mandates, and tax breaks would become even more shrill than they are now: there would be clamoring for a massive bailout of an overinvested industry. At that point, the major investments that have been made in biofuels would start to look like a failed gamble. On the other hand, if oil prices hover around $55-$60, ethanol producers could pay from $3.65 to $4.54 for a bushel of corn and manage to make a normal 12 percent profit.

Whatever happens in the oil market, the drive for energy independence, which has been the basic justification for huge investments in and subsidies for ethanol production, has already made the industry dependent on high oil prices.

Cornucopia
One root of the problem is that the biofuel industry has long been dominated not by market forces but by politics and the interests of a few large companies. Corn has become the prime raw material even though biofuels could be made efficiently from a variety of other sources, such as grasses and wood chips, if the government funded the necessary research and development. But in the United States, at least, corn and soybeans have been used as primary inputs for many years thanks in large part to the lobbying efforts of corn and soybean growers and Archer Daniels Midland Company (ADM), the biggest ethanol producer in the U.S. market.

Since the late 1960s, ADM positioned itself as the "supermarket to the world" and aimed to create value from bulk commodities by transforming them into processed products that command heftier prices. In the 1970s, ADM started making ethanol and other products resulting from the wet-milling of corn, such as high fructose corn syrup. It quickly grew from a minor player in the feed market to a global powerhouse. By 1980, ADM's ethanol production had reached 175 million gallons per year, and high fructose corn syrup had become a ubiquitous sweetening agent in processed foods. In 2006, ADM was the largest producer of ethanol in the United States: it made more than 1.07 billion gallons, over four times more than its nearest rival, VeraSun Energy. In early 2006, it announced plans to increase its capital investment in ethanol from $700 million to $1.2 billion in 2008 and increase production by 47 percent, or close to 500 million gallons, by 2009.

ADM owes much of its growth to political connections, especially to key legislators who can earmark special subsidies for its products. Vice President Hubert Humphrey advanced many such measures when he served as a senator from Minnesota. Senator Bob Dole (R-Kans.) advocated tirelessly for the company during his long career. As the conservative critic James Bovard noted over a decade ago, nearly half of ADM's profits have come from products that the U.S. government has either subsidized or protected.

Partly as a result of such government support, ethanol (and to a lesser extent biodiesel) is now a major fixture of the United States' agricultural and energy sectors. In addition to the federal government's 51-cents-per-gallon tax credit for ethanol, smaller producers get a 10-cents-per-gallon tax reduction on the first 15 million gallons they produce. There is also the "renewable fuel standard," a mandatory level of nonfossil fuel to be used in motor vehicles, which has set off a political bidding war. Despite already high government subsidies, Congress is considering lavishing more money on biofuels. Legislation related to the 2007 farm bill introduced by Representative Ron Kind (D-Wis.) calls for raising loan guarantees for ethanol producers from $200 million to $2 billion. Advocates of corn-based ethanol have rationalized subsidies by pointing out that greater ethanol demand pushes up corn prices and brings down subsidies to corn growers.

The ethanol industry has also become a theater of protectionism in U.S. trade policy. Unlike oil imports, which come into the country duty-free, most ethanol currently imported into the United States carries a 54-cents-per-gallon tariff, partly because cheaper ethanol from countries such as Brazil threatens U.S. producers. (Brazilian sugar cane can be converted to ethanol more efficiently than can U.S. corn.) The Caribbean Basin Initiative could undermine this protection: Brazilian ethanol can already be shipped duty-free to CBI countries, such as Costa Rica, El Salvador, or Jamaica, and the agreement allows it to go duty-free from there to the United States. But ethanol supporters in Congress are pushing for additional legislation to limit those imports. Such government measures shield the industry from competition despite the damaging repercussions for consumers.

Starving the Hungry
Biofuels may have even more devastating effects in the rest of the world, especially on the prices of basic foods. If oil prices remain high -- which is likely -- the people most vulnerable to the price hikes brought on by the biofuel boom will be those in countries that both suffer food deficits and import petroleum. The risk extends to a large part of the developing world: in 2005, according to the UN Food and Agriculture Organization, most of the 82 low-income countries with food deficits were also net oil importers.

Even major oil exporters that use their petrodollars to purchase food imports, such as Mexico, cannot escape the consequences of the hikes in food prices. In late 2006, the price of tortilla flour in Mexico, which gets 80 percent of its corn imports from the United States, doubled thanks partly to a rise in U.S. corn prices from $2.80 to $4.20 a bushel over the previous several months. (Prices rose even though tortillas are made mainly from Mexican-grown white corn because industrial users of the imported yellow corn, which is used for animal feed and processed foods, started buying the cheaper white variety.) The price surge was exacerbated by speculation and hoarding. With about half of Mexico's 107 million people living in poverty and relying on tortillas as a main source of calories, the public outcry was fierce. In January 2007, Mexico's new president, Felipe Calderón, was forced to cap the prices of corn products.

The International Food Policy Research Institute, in Washington, D.C., has produced sobering estimates of the potential global impact of the rising demand for biofuels. Mark Rosegrant, an IFPRI division director, and his colleagues project that given continued high oil prices, the rapid increase in global biofuel production will push global corn prices up by 20 percent by 2010 and 41 percent by 2020. The prices of oilseeds, including soybeans, rapeseeds, and sunflower seeds, are projected to rise by 26 percent by 2010 and 76 percent by 2020, and wheat prices by 11 percent by 2010 and 30 percent by 2020. In the poorest parts of sub-Saharan Africa, Asia, and Latin America, where cassava is a staple, its price is expected to increase by 33 percent by 2010 and 135 percent by 2020. The projected price increases may be mitigated if crop yields increase substantially or ethanol production based on other raw materials (such as trees and grasses) becomes commercially viable. But unless biofuel policies change significantly, neither development is likely.

The production of cassava-based ethanol may pose an especially grave threat to the food security of the world's poor. Cassava, a tropical potato-like tuber also known as manioc, provides one-third of the caloric needs of the population in sub-Saharan Africa and is the primary staple for over 200 million of Africa's poorest people. In many tropical countries, it is the food people turn to when they cannot afford anything else. It also serves as an important reserve when other crops fail because it can grow in poor soils and dry conditions and can be left in the ground to be harvested as needed.

Thanks to its high-starch content, cassava is also an excellent source of ethanol. As the technology for converting it to fuel improves, many countries -- including China, Nigeria, and Thailand -- are considering using more of the crop to that end. If peasant farmers in developing countries could become suppliers for the emerging industry, they would benefit from the increased income. But the history of industrial demand for agricultural crops in these countries suggests that large producers will be the main beneficiaries. The likely result of a boom in cassava-based ethanol production is that an increasing number of poor people will struggle even more to feed themselves.

Participants in the 1996 World Food Summit set out to cut the number of chronically hungry people in the world -- people who do not eat enough calories regularly to be healthy and active -- from 823 million in 1990 to about 400 million by 2015. The Millennium Development Goals established by the United Nations in 2000 vowed to halve the proportion of the world's chronically underfed population from 16 percent in 1990 to eight percent in 2015. Realistically, however, resorting to biofuels is likely to exacerbate world hunger. Several studies by economists at the World Bank and elsewhere suggest that caloric consumption among the world's poor declines by about half of one percent whenever the average prices of all major food staples increase by one percent. When one staple becomes more expensive, people try to replace it with a cheaper one, but if the prices of nearly all staples go up, they are left with no alternative.

In a study of global food security we conducted in 2003, we projected that given the rates of economic and population growth, the number of hungry people throughout the world would decline by 23 percent, to about 625 million, by 2025, so long as agricultural productivity improved enough to keep the relative price of food constant. But if, all other things being equal, the prices of staple foods increased because of demand for biofuels, as the IFPRI projections suggest they will, the number of food-insecure people in the world would rise by over 16 million for every percentage increase in the real prices of staple foods. That means that 1.2 billion people could be chronically hungry by 2025 -- 600 million more than previously predicted.

The world's poorest people already spend 50 to 80 percent of their total household income on food. For the many among them who are landless laborers or rural subsistence farmers, large increases in the prices of staple foods will mean malnutrition and hunger. Some of them will tumble over the edge of subsistence into outright starvation, and many more will die from a multitude of hunger-related diseases.

The Grass is Greener
And for what? Limited environmental benefits at best. Although it is important to think of ways to develop renewable energy, one should also carefully examine the eager claims that biofuels are "green." Ethanol and biodiesel are often viewed as environmentally friendly because they are plant-based rather than petroleum-based. In fact, even if the entire corn crop in the United States were used to make ethanol, that fuel would replace only 12 percent of current U.S. gasoline use. Thinking of ethanol as a green alternative to fossil fuels reinforces the chimera of energy independence and of decoupling the interests of the United States from an increasingly troubled Middle East.

Should corn and soybeans be used as fuel crops at all? Soybeans and especially corn are row crops that contribute to soil erosion and water pollution and require large amounts of fertilizer, pesticides, and fuel to grow, harvest, and dry. They are the major cause of nitrogen runoff -- the harmful leakage of nitrogen from fields when it rains -- of the type that has created the so-called dead zone in the Gulf of Mexico, an ocean area the size of New Jersey that has so little oxygen it can barely support life. In the United States, corn and soybeans are typically planted in rotation, because soybeans add nitrogen to the soil, which corn needs to grow. But as corn increasingly displaces soybeans as a main source of ethanol, it will be cropped continuously, which will require major increases in nitrogen fertilizer and aggravate the nitrogen runoff problem.

Nor is corn-based ethanol very fuel efficient. Debates over the "net energy balance" of biofuels and gasoline -- the ratio between the energy they produce and the energy needed to produce them -- have raged for decades. For now, corn-based ethanol appears to be favored over gasoline, and biodiesel over petroleum diesel -- but not by much. Scientists at the Argonne National Laboratory and the National Renewable Energy Laboratory have calculated that the net energy ratio of gasoline is 0.81, a result that implies an input larger than the output. Corn-based ethanol has a ratio that ranges between 1.25 and 1.35, which is better than breaking even. Petroleum diesel has an energy ratio of 0.83, compared with that of biodiesel made from soybean oil, which ranges from 1.93 to 3.21. (Biodiesel produced from other fats and oils, such as restaurant grease, may be more energy efficient.)

Similar results emerge when biofuels are compared with gasoline using other indices of environmental impact, such as greenhouse gas emissions. The full cycle of the production and use of corn-based ethanol releases less greenhouse gases than does that of gasoline, but only by 12 to 26 percent. The production and use of biodiesel emits 41 to 78 percent less such gases than do the production and use of petroleum-based diesel fuels.

Another point of comparison is greenhouse gas emissions per mile driven, which takes account of relative fuel efficiency. Using gasoline blends with 10 percent corn-based ethanol instead of pure gasoline lowers emissions by 2 percent. If the blend is 85 percent ethanol (which only flexible-fuel vehicles can run on), greenhouse gas emissions fall further: by 23 percent if the ethanol is corn-based and by 64 percent if it is cellulose-based. Likewise, diesel containing 2 percent biodiesel emits 1.6 percent less greenhouse gases than does petroleum diesel, whereas blends with 20 percent biodiesel emit 16 percent less, and pure biodiesel (also for use only in special vehicles) emits 78 percent less. On the other hand, biodiesel can increase emissions of nitrogen oxide, which contributes to air pollution. In short, the "green" virtues of ethanol and biodiesel are modest when these fuels are made from corn and soybeans, which are energy-intensive, highly polluting row crops.

The benefits of biofuels are greater when plants other than corn or oils from sources other than soybeans are used. Ethanol made entirely from cellulose (which is found in trees, grasses, and other plants) has an energy ratio between 5 and 6 and emits 82 to 85 percent less greenhouse gases than does gasoline. As corn grows scarcer and more expensive, many are betting that the ethanol industry will increasingly turn to grasses, trees, and residues from field crops, such as wheat and rice straw and cornstalks. Grasses and trees can be grown on land poorly suited to food crops or in climates hostile to corn and soybeans. Recent breakthroughs in enzyme and gasification technologies have made it easier to break down cellulose in woody plants and straw. Field experiments suggest that grassland perennials could become a promising source of biofuel in the future.

For now, however, the costs of harvesting, transporting, and converting such plant matters are high, which means that cellulose-based ethanol is not yet commercially viable when compared with the economies of scale of current corn-based production. One ethanol-plant manager in the Midwest has calculated that fueling an ethanol plant with switchgrass, a much-discussed alternative, would require delivering a semitrailer truckload of the grass every six minutes, 24 hours a day. The logistical difficulties and the costs of converting cellulose into fuel, combined with the subsidies and politics currently favoring the use of corn and soybeans, make it unrealistic to expect cellulose-based ethanol to become a solution within the next decade. Until it is, relying more on sugar cane to produce ethanol in tropical countries would be more efficient than using corn and would not involve using a staple food.

The future can be brighter if the right steps are taken now. Limiting U.S. dependence on fossil fuels requires a comprehensive energy-conservation program. Rather than promoting more mandates, tax breaks, and subsidies for biofuels, the U.S. government should make a major commitment to substantially increasing energy efficiency in vehicles, homes, and factories; promoting alternative sources of energy, such as solar and wind power; and investing in research to improve agricultural productivity and raise the efficiency of fuels derived from cellulose. Washington's fixation on corn-based ethanol has distorted the national agenda and diverted its attention from developing a broad and balanced strategy. In March, the U.S. Energy Department announced that it would invest up to $385 million in six biorefineries designed to convert cellulose into ethanol. That is a promising step in the right direction.
Read more...

It's Jihad, Charley Brown

Friday, April 27, 2007

Corn Ethanol: Laundering Fossil Fuels, Bilking Taxpayers, Damaging the Environment

Drink up, sport.By Tad W. Patzek
March 16, 2006


Corn ethanol is the fuel du jour. It’s domestic. It’s not oil. Ethanol’s going to help promote “energy independence.” Magazines trumpet it as the motor vehicle fuel that comes from the “Midwest rather than the Mideast.” But is it really?

There is plenty of corn, to be sure. American farmers grow about 42% of the world’s output. It’s the single largest crop on earth (the sugarcane crop is larger, but it contains more water). In 2004, U.S. corn output could have fed the entire population of China. However, a mere 2% of U.S. corn goes directly to feed people; another 19% goes into processed foods (e.g., the high-fructose corn syrup additive in almost every processed food product in our supermarkets). The majority of U.S. corn goes to feed livestock, even though corn makes cattle sick and produces antibiotic-resistant bacteria.

These uses still leave mountains of excess corn stashed all over Midwest fields, waiting to rot or be processed into ethanol.

Interestingly, the National Corn Growers Association has been asking every corn grower to lobby Congress to increase domestic production of fossil fuels by opening the Arctic National Wildlife Reserve and the Outer Continental Shelf for exploration and production, and by drilling everywhere on U.S. territory for oil and gas. Why? Because the U.S. agricultural industry depends heavily on natural gas, coal, and petroleum for its existence. Nitrogen derivatives and other fertilizers drive the high yields achieved by U.S. farmers. Corn farming devours about 40% of these fertilizers. Nitrogen fertilizers, accounting for roughly half the total energy input per acre of harvested corn, are made from natural gas that is badly needed for other uses, such as home heating, cooking, and power generation. Today, the U.S. imports 15% of its natural gas and 60% of its oil. Furthermore, it is the world’s largest importer of nitrogen fertilizers, mostly from Trinidad, Tobago, Canada, Russia, and Saudi Arabia.

The farm sector also depends significantly on natural gas and petroleum for transportation, refrigeration, irrigation, crop drying, heating farm buildings and homes, and pesticides and herbicides.

Accounting for the direct costs, roughly 40% of the calorific value of industrial corn grain comes directly from the use of fossil fuels, mostly natural gas, but also coal and petroleum. This grain could be burned in efficient corn stoves to provide home heating for the Midwest, or it could be ground, fermented, and distilled to produce ethanol.

Because corn grain is a nascent, or “baby” fossil fuel, it takes a lot of energy to transform it into ethanol. For example, the best performance guarantee by ICM, Inc. of Kansas, states that a dry-mill ethanol plant will spend an incredible 58% of ethanol’s calorific value on direct distillation and co-product processing costs. If corn or ethanol must be moved from the Midwest to either coast, there is an additional transportation cost of up to 11% of ethanol’s calorific value. An average U.S. refinery uses less than 12% of gasoline or diesel fuel’s calorific value to produce and distribute them. Therefore, it takes from roughly 5 to 12 times more fossil energy to refine corn grain into ethanol than it does to convert crude oil into gasoline or diesel fuel.

Ethanol refineries also use huge amounts of water. An average dry-mill plant needs about 750,000 gallons of processing water per day. Some of this water is recycled, but the rest must be obtained from a local water supply. Clean drinking water is becoming scarce in much of the Midwest, especially across its western area. An average ethanol refinery emits dozens of dangerous chemicals into the air, such as toluene, ethylbenzene, acetone, formaldehyde, acetaldehyde, acrolein, benzene, styrene, and furfural. In line with the current schizophrenic attitude towards ethanol production, the U.S. Environmental Protection Agency has just proposed allowing ethanol refineries to more than double their legal air emissions, from 100 to 250 tons per year.

There are serious questions about the sustainability of corn production. Iowa has lost about half of its 14 inches of top soil to erosion. Fertilizer runoff and farm chemicals have polluted much of the Mississippi River basin, and that runoff flows all the way into the Gulf of Mexico. Over the last 20 years, the runoff from Midwestern corn and wheat fields into the Gulf of Mexico has totaled between 2,000 and 10,000 tons of nitrate per day. Over the next 70 years, thanks to agribusiness and industrial agriculture, the most productive grassland ecosystem on earth may be completely destroyed, neutered by overproduction. As they continue to be degraded, Midwestern fields will have to become larger and be subsidized even more with fossil energy.

Industrial crop production (corn, wheat, soybeans, etc.) causes environmental damage and loss of human health valued at between $5.7 and $16.9 billion per year. The annual hidden subsidies to agribusiness from environmental resources are estimated at $25 to $100 per hectare.

If you compares a corn field with a prairie, the conclusion is that the prairie runs on sunlight, while the corn field runs on fossil fuels. The most eloquent testimony to this effect was given by Theresa Schmalshof of the National Corn Growers Association, before the House Subcommittee on Energy and Mineral Resources in Washington, D.C. on May 19, 2005. She said that corn farmers will “face huge obstacles if our nation cannot come to grips with its desire to have limitless resources, like natural gas, for production and not realize that these resources have to come from somewhere. I am sure the members of the subcommittee as individuals know this well. However, Congress seems unaware of this fact. We can produce corn, but we need you to produce the kind of policy that enables us to use the needed resources to do so.”

Thus corn agriculture is a scheme to launder fossil fuels into an industrial raw material, while damaging the environment of roughly half the continental U.S. land mass, and poisoning most rivers, streams, and coastal waters.

For more on what Patzek has to say, click here.
Read more...

Thursday, April 26, 2007

Dollar Myths

Chump ChangeBy Axel Merk
April 26, 2007


Without shying away from controversy, we do away with a number of myths of why the dollar ought to move up or down.

Myth I: The dollar is safe because the U.S. has ample assets
Some say the current account deficit that requires foreigners to arrange for over $3 billion of capital inflows every business day just to keep the dollar from falling does not matter. These pundits say a deficit of 6.5% of Gross Domestic Product (GDP) is sustainable because the deficit is only about 1% of all private assets held in the U.S.; as a result, deficits could be carried a long, long time.

This argument is one about the dollar going to zero, an extreme case of the dollar losing relative to other currencies. However, the current account deficit and its affect on the dollar is about cash flow: by putting it in the context of a GDP is reasonable, as GDP is a cash flow measure of production. Comparing it to private savings is mixing apples with oranges.

Myth II: The dollar is doomed because of our large budget deficit
Just as dollar optimists are wrong to say the dollar is safe because of our tremendous wealth, dollar pessimists are mistaken to put too much emphasis on the budget deficit. By issuing debt, the direct impact of the budget deficit can be mitigated to the burden of interest payments. Of course, as interest payments become excessively large, they will weigh on the dollar eventually. However, the linkage to the dollar is indirect. While it is correct that large budget deficits structurally weaken the U.S. in the long run, it is not appropriate to link short-term dollar movements to the budget deficit.

Myth III: A lower dollar will cure the trade deficit
All too often we hear how much more competitive we would be if we only allowed the dollar to fall. While a weaker dollar may be a short-term boost to earnings and make exports a tad more competitive, it will not bring back industries that have been outsourced. It is most unlikely that the U.S. will thrive on exporting sneakers to China, no matter how low the dollar will fall.

What a weaker dollar may do is provide temporary relief. But unless the U.S. turns into a society of savers and investors, a weaker dollar will only be a pause to an even weaker dollar as imbalances are built up yet again.

Myth IV: A lower trade deficit will save the dollar
Odds are that the current account deficit may be close to its peak. However, that does not mean the dollar is out of the woods: if an abatement in the rate at which the current account deficit deepens were due to a sustained improvement in savings and investments, it may have long term positive implications for the dollar. But it looks like the driver behind any ‘improvement’ (if one can talk of such as the deficit continues to widen) will be due to a drop in domestic consumption due to a slowing economy. Rather than being good news for the dollar, this discourages foreign investors to invest in the U.S. American CEOs focus their investments abroad, so why should foreigners invest in the U.S.?

As the economy slows and consumers can no longer extract equity from their homes, the savings rate ought to go up. Famous for having dipped into negative territory, consumers have to pare back their spending as access to easy money dries up.

Myth V: A weak economy causes a currency to falter
We agree that the U.S. economy is heavily dependent on growth to keep the dollar stable. But it is a U.S. specific problem: in the current environment, it may not apply to the European Union. The key difference is that, in recent years, the European Union has focused on structural reform rather than growth; as a result, it does not have the severe current account deficit the U.S. has. Should the world economy slow down, many markets may suffer, but the euro might still do comparatively well. Europe has plenty of issues, but as far as the euro is concerned, the region is in a very strong position.

In contrast, a reduction of foreign money inflows into the U.S. is the single biggest threat to the greenback. As a result, the dollar has been reacting negatively to any news signaling a slowdown of U.S. consumer spending. And as consumer spending is closely linked to the fate of the housing market, negative data on housing may reflect negatively on the dollar. As the housing market is not very liquid, any adjustment process is likely to be long and grinding.

Myth VI: China is the problem
In our assessment, China is the most responsible player in Asia. Unlike China, we believe other Asian countries, including Japan, are willing to risk a destruction of their currencies in order to continue to export to American consumers. The Chinese are taking their imbalances very seriously and are working hard at addressing many issues facing a nation governing 1.4 billion people. Having invited Western investment banks to invest billions in their local banks has provided an encouragement for reform from within.

If there is one thing that spooks the currency markets more than a slowdown in U.S. real estate, it is the flaring up of protectionist talking Congress. When presidential candidate Hillary Clinton recently expressed concern about the Chinese buying up the majority of U.S. debt, the dollar fell sharply. If protectionist measures increase, foreigners will have fewer incentives to purchase U.S. dollar denominated assets, providing pressure on both the dollar and interest rates.

Interestingly, nobody seemed to focus on the fact that there is an unconventional solution to foreigners holding too much of our debt: live within your means and do not issue debt. Such an old fashioned concept would indeed strengthen the dollar. Unfortunately, none of the presidential candidates at either side of the aisle seem to have heard of this notion.

Myth VII: Higher interest rates help the dollar
It seems that ever since academics developed a theory of how interest rate differentials move currencies, the theory has not worked. Yet just about every textbook continues to teach it. Aside from the fact that expectations on future interest rates and inflation are more relevant than actual interest rates, there are simply too many factors influencing currencies to be able to focus in on interest rates. Why do some low yielding currencies, such as the Swiss franc, perform reasonably well, whereas many developing countries have weak currencies despite high interest rates?

A good year ago, the U.S. joined the ranks of developing nations in paying more in interest to overseas creditors than it receives in interest from its own investments. As a result, higher U.S. interest rates mean higher payments abroad, further weakening the foundations of the U.S. dollar.

There are many more myths about the dollar, but the selection above may provide some food for thought. Investors interested in taking some chips off the table to prepare for potential turbulence in the financial markets may want to evaluate whether gold or a basket of hard currencies are suitable ways to add diversification to their portfolios. We manage the Merk Hard Currency Fund, a fund that seeks to profit from a potential decline in the dollar. To learn more about the Fund, or to subscribe to our free newsletter, please visit www.merkfund.com.
Read more...

Tuesday, April 24, 2007

Hamas Rocket Firings End Calm on Israel-Gaza Border

From CNN
April 24, 2007


• Hamas militants fired a barrage of rockets and mortar shells toward Israel
• Group says it fired 30 rockets and 61 mortar shells at Israel
• The action ends five months of relative calm along the Israel-Gaza border

Don't play with fireworks.For the first time in five months, the armed wing of Hamas has fired mortars and rockets into Israel from Gaza, breaking an unofficial truce and a period of relative calm along the border.

Hamas' militant wing, Izzedine al-Qassam Brigades, claimed responsibility for the attack in a statement posted on its Web site. The group's spokesman, Abu Obeida, promised "a cruel and painful response to any aggression in the Strip [Gaza]."

Obeida added: "We want to remind Zionist forces that we still hold Gilad Shalit and we are still prepared to kidnap others."

Cpl. Gilad Shalit was kidnapped from an Israeli border post near Gaza June 25. Two other Israeli soldiers were killed in the raid. Hamas and other Palestinian militant groups took responsibility for the attack and his abduction.

Israeli defense sources told CNN they believed Tuesday's attack may have been part of a larger operation to abduct another soldier. But the Israel Defense Forces made no mention of an attempted kidnapping in its official statement, saying, "The Hamas terrorist organization attempted to execute yet another terrorist attack by means of a large-scale operation."

It added, "IDF forces operated in an immediate and determined manner, thus thwarting the planned terrorist attack."

It's unclear whether the Hamas attack marks the end of a partial cease-fire between militants operating in Gaza and the Israeli military that began in November. "There was a temporary conditional truce, and the Zionist enemy violated it and therefore it has been essentially over for some time," the Hamas militant spokesman said.

In its statement, the IDF accused Hamas of "cynically using the cease-fire" to continue to plan terrorist attacks against Israel.

Palestinian Prime Minister Ismail Haniyeh, a member of Hamas, said, "We made great efforts at keeping the truce and there was a positive Palestinian position, but unfortunately this position was met by expanding [Israeli] aggression and escalating it against the Palestinian people," according to The Associated Press.

On its Web site, Izzedine al-Qassam Brigades said it fired 30 Qassam rockets and 61 mortar shells early Tuesday in response to recent Israeli operations in Gaza and the West Bank.

An Israeli military spokesman told CNN that only eight mortar rounds had been fired and six rockets, two of which landed in Israel. No injuries were reported.

In response, Israeli helicopters fired on suspected missile launching locations in southern Gaza, the spokesman said.

In his statement on the group's Web site, Obeida called for Palestinian factions to be ready for a new confrontation with Israeli forces after Israeli military operations in the West Bank left nine Palestinians dead over the weekend.

Since November, a partial cease-fire has been in place between the Israeli military and militants operating in Gaza.

Hamas says it has refrained from missile attacks during that time, but some 200 missiles have been launched into Israel by other militant groups, and in recent weeks Israel has commenced air strikes against what they say were suspected militant targets.
Read more...

Sunday, April 22, 2007

Building A Green Grid

Solar Tower BurongaBy Christian Parenti

Terry Hudgens is a classic oilman: thick drawl, square jaw, engineering degree from the University of Houston, twenty-five years with Texaco in the oil patch, which ended with his running the company's $5 billion-a-year natural gas business.

These days Hudgens lives in Portland, Oregon, epicenter of organic coffee and politically correct unshavenness. To hear him talk, you could think he is wearing Birkenstocks: Instead of the good-old-boy discourse of the petroleum industry, Hudgens now speaks about "the power of the wind" and the future of clean energy.

But this is not the story of a midlife crisis, a businessman gone groovy at age 55. Instead, Hudgens has brought his hard-nosed oil-patch logic to the frontiers of renewable energy. He is now CEO of PPM Energy, a subsidiary of ScottishPower and America's second-largest and possibly fastest-growing wind power company. He got into wind for the same reason he got into oil--it's a good way to make money.

"This is wind power on a grand scale," says Hudgens. He is talking about projects like Maple Ridge Wind Farm, the biggest power plant of any sort built in New York during 2006. The farm's 195 huge white wind turbines, with blades as long as jet wings perched atop tall steel towers, are spread across miles of ridgeline in Tug Hill, New York, catching steady airflow off the Great Lakes. On a good day this farm will produce 321 megawatts of power, as much as a midsize coal- or gas-fired plant.

The green future wasn't supposed to look like this. In the environmental imagination of the 1960s and '70s, the ecological ideal was something quaint, a village where every house had solar panels, a windmill and a vegetable garden where the lawn once soaked up pesticides. E.F. Schumacher told us that "small is beautiful," and to this day many environmentalists see large centralized systems as inherently bad.

But the speed and magnitude of climate change dictate that we begin the transformation away from carbon-based fuels now--and on a very large scale. Only a few decades remain if we are to avoid cataclysmic runaway global warming and its attendant crises. Realistically, a green transformation will have to pivot on electricity and the existing electrical grid. At one end of the grid, zero-emission vehicles can be plugged in, while at the other end zero-emission power plants--most likely owned by large for-profit companies--can feed the system electricity.

Large utility-scale renewable energy offers important economies of scale. In Denmark industrial-scale wind farms already supply 20 percent of the country's power; Germany and other European countries are close behind. The American Council on Renewable Energy estimates that with "consistent public policy" and enough investment, 70 percent of America's energy consumption could be generated from renewable, carbon-free sources by 2025. Another government-supported study estimates that with radical efficiency efforts, renewable energy could supply all US electrical needs by 2030.

So, how have renewable utilities developed thus far? Who are the key players? How do they relate to the rest of the economy? What technologies work best? And what are the real economics of creating a green power grid?

The story of wind, solar, geothermal and biomass energy development in the United States is an appalling tale of missed opportunities and willful negligence. The government has refused to use subsidies to jump-start green power, but it lavishes public money on fossil fuels. To the extent that the transition to utility-scale green power has begun--with the emergence of companies like Hudgens's PPM and huge wind farms under construction in California, Texas and the upper Midwest--it is no thanks to government initiative.

Petroleum and coal companies received more than $33 billion in direct subsidies between 1992 and 2002. The 2005 energy bill gave the oil and gas industries $6 billion in subsidies while filthy coal will get about $10 billion over the next five years. This public largesse takes the form of everything from R&D support and loan guarantees to accelerated capital depreciation schedules in the tax code.

Meanwhile, renewables have struggled to insure even a basic production tax credit, or PTC, of 1.9 cents per kilowatt hour. This modest incentive was designed to create a stable income for firms willing to risk breaking into the utilities market with new technology. It's important to stress that this tax credit does not reward construction for construction's sake; it rewards only the actual delivery of energy to the grid. But this rational little subsidy, initiated in 1992, was never enacted for more than one year at a time, and it was routinely allowed to expire. Last year the PTC was finally renewed for two consecutive years; it will likely be locked in for five or ten years. That has triggered a huge wave of private investment in green utilities.

Of all the renewables, wind is among the most profitable. Although it supplies only 1 percent of total US electricity, it is the fastest-growing of the renewables: Installed wind capacity jumped by almost a third last year, to 11,603 megawatts. That is about equal to ten major nuke plants or twenty typical coal plants.

"This is heavy industry," says Mike Jacobs of the American Wind Energy Association. "Building windmills is leading to a lot of investment and job creation in traditional industrial areas." Demand for steel towers, gearboxes and those jet-wing-sized blades is creating positive links to some economically battered regions. Last year Gamesa, a large Spanish turbine manufacturer, opened a factory in an abandoned US Steel plant in Pennsylvania. The world's largest wind turbine maker, the Denmark-based Vestas, is opening a plant in Colorado. In North Dakota, sometimes called the Saudi Arabia of wind, DMI industries is emerging as the king of windmill tower construction.

Meanwhile, farmers from Texas to the Dakotas to New York are making money by "double cropping"--that is, renting space in their fields to wind-harvesting utility companies. There is now so much investment flowing into wind--tens of billions of dollars looking for projects--that turbine producers cannot keep up with demand. Many are sold out through 2008.

Thanks to twenty years of bad US energy policy, the leading wind turbine producers and wind farm operators are not American: Suzlon Energy is based in India, Gamesa in Spain, Vestas in Denmark, Mitsubishi in Japan and Siemens in Germany. GE is the only large US firm with substantial investments in wind turbine production.

"Wind is getting much more efficient," says Hudgens. Wind also rates high in terms of its so-called energy return on investment: that is, the amount of energy that goes into producing the windmills that then produce energy. "The average new windmill going online today produces about three times as much power as the ones built just seven years ago," Hudgens explains. And as the turbines get bigger and more efficient, they move more slowly and do less damage to migrating birds and bats--though the environmental threat of windmills has always been exaggerated by wind's opponents, usually rich rural landlords who find wind technology unsightly.

Solar is another promising technology with a variety of applications. Photovoltaic panels on large commercial roofs are becoming popular in Sunbelt states and even in northern states. These "rooftop" systems are highly efficient--no energy is lost in transmission--but such systems typically can't supply more than 15 percent of a client's energy needs.

Utility-scale photovoltaic farms also exist, but these are rarely bigger than sixty megawatts. However, the largest in the United States is 760 megawatts, owned by Tucson Electric Power Company, and is set to more than double in size by 2009. But photovoltaic panels are expensive; pure silicon crystals, from which they are made, are in increasingly short supply.

A simpler technology is concentrating solar power (CSP), or solar thermal, in which fields of mirrors concentrate the sun's heat onto a central tower to boil mineral oil, the steam from which then spins a turbine to create electricity. Several CSP plants generate about sixty megawatts each, though Southern California Edison has a series of linked plants in the Mojave Desert that generate 354 megawatts.

Geothermal--hot water spewing out of the ground--produces only about 2,800 megawatts nationwide but could produce fifty times that with proper investment. However, "we've been nickel-and-diming renewable development," says Karl Gawell of the Geothermal Energy Association. With surprising equanimity, he adds, "The federal government currently spends no money on geothermal R&D."

Landfill gas, the noxious methane seeping from the underground mountains of consumer glories past, already produces a surprising amount of energy, as do various types of biomass such as "digesting" pig waste, cow manure and fermented grass clippings.

But the most productive of all the renewables is the oldest. Hydropower, mostly owned by major utility firms, produces about 9 percent of all US electricity. When electrification began in the 1880s, hydro was king; by 1920 water produced 40 percent of American electricity. During the big government, big vision days of the New Deal, hydro construction boomed: Think Hoover Dam, Grand Coulee Dam, Tennessee Valley Authority, etc.

Dams are much disparaged for killing fish--or, in fact, killing whole rivers. But state-of-the-art hydro can avoid much of that. And if climate change is allowed to run out of control, we can kiss the riparian habitat goodbye anyway. "Currently only 3 percent of existing US dams are harnessed for power," says Jeff Leahey of the National Hydropower Association. A crash program of carbon emissions reduction would no doubt involve retrofitting many existing dams with fish-friendly power turbines. But when I ask Leahey about such plans and whether the hydropower industry is lobbying for them, he is rather dispassionate. "Lately, the direction has really been away from hydro."

Cutting-edge hydropower, often called kinetic hydro, doesn't even require dams. In New York City's murky East River, a new firm called Verdant Power has installed a small field of underwater turbines that generate ten megawatts of electricity from the might of the river's tides (in fact, the East River isn't a river at all, but a tidal strait). That's small-scale, but advocates of kinetic hydro say it could be a useful part of a larger solution: New York State could produce 600 megawatts of power this way--that's half of what a typical nuke plant produces.

A major problem facing green utilities is the battered condition of our electrical grid. Two decades of radical deregulation have allowed utility companies to cut back on maintenance. Electricity demand has increased by about 25 percent since 1990, but the rate of investment in transmission facilities has decreased by about 30 percent. Companies find it more profitable to simply overload the old grid. The result is congestion, which means rising inefficiency: In 1970 only about 5 percent of electricity was lost during transmission; now the rate is almost double that. It also means large blackouts like the one that hit the Northeast and Midwest in August 2003. A green future--with plug-in vehicles at one end of the wires and renewable energy suppliers at the other end--will lean on the grid even harder.

"Five years out, the electrical grid, the infrastructure, is going to be a serious problem," says Mike Jacobs. "The last time a huge round of transmission lines was built was in the 1970s, in response to big blackouts in the 1960s." This impending crisis of the electrical infrastructure will require robust government action--tough new regulation to force reinvestment rather than profit-taking.

In canvassing the leaders of the green power industry, I was repeatedly struck by their timidity: Their discourse is polite, their vision limited. The wind industry has settled on a goal of supplying 20 percent of US electricity by 2020. Why so little? Why not more, sooner? When I press Hudgens, he says simply, "We're not projecting greater growth. But it's not impossible."

Given the crisis we face as a species, carbon-free electricity ought to be a top priority. Subsidies for fossil fuels should be eliminated and replaced with mercilessly steep carbon taxes. This money, and more, should underwrite clean power generation and a massive overhaul of the national grid. Aggressive state action may also be needed to sweep away NIMBYs who oppose wind farms on aesthetic grounds.

Though it clashes with America's free-market mythology, aggressive state intervention has propelled all the tectonic shifts in our economic history. From granting land rights for plantations, to the creation of the railroads, to the rise of Big Oil and the creation of the aerospace and high-tech industries, government support has always helped the market along. It's time to couple these traditional tools--subsidies and tax incentives--with punitive regulation and tax levies to euthanize fossil fuels and build a green grid.
Read more...

Saturday, April 21, 2007

Islam is wonderful, but I can't stand the Muslims

"Why should I try to convert my non-Muslim friends when I often prefer them to the Muslims that I know? How will being Muslim change their lives for the better if they already display more of the Islamic virtues than most of the Muslims they are likely to meet?"

By Michael A. Malik

There was a white face in the mosque. You don't see very many, so I went over and asked if he was a Muslim, “I used to be, but not any more.” he said, “I thought Islam was wonderful, but I couldn't stand the Muslims”. What could I say except “I know how you feel”;. Most converts do.

Of course one meets some special individuals in encounters with the ummah, but how is it possible that in the Muslim world they seem so few and far between? Does my being a cultural alien mean that I am inherently less capable of understanding Islam, or is it just that I don't understand my fellow Muslims? Why is it that a trip to the mosque so often leaves me closer to despair than hope? Why do I so rarely feel enlightened and uplifted after conversation with my fellow Muslims, yet so often offended by their behaviour, frustrated by their mindless approach to truth, and enraged by the inadequacy of the Islam they expect me to accept? How often I have felt like giving it all up.

Fortunately I was a Muslim for four years before going to the Muslim world and meeting those who feel that Islam belongs to them by birthright, so I early on formed a relationship with God which served to armour me against the ummah. The first time I went into a mosque in a Muslim country, the first thing to happen was that someone tried to throw me out. Now they weren’t to know that I was a Muslim but they didn't even ask. When I told them, in fact, the first thing they did ask was “Sunni or Shi’a?”, so if I'd picked the wrong one they would probably have thrown me out anyway. I thoroughly confused them when I said I didn't care, however, and eventually they let me stop and pray.

First impressions last a long time, they say, but many years after having learned by experience the best way to get in, pray, and get out without harassment, it still seems that in a strange mosque a strange face is more likely to be greeted with hostility than welcome.

The man in the editor's office was obviously a Muslim, so the brusque arrogance of his manner should not have come as a surprise. It did little, however, to incline me towards composing a careful answer, too much effort was required to remain courteous, and it seemed more like a challenge than a question. “And how many of your people have you converted?” he said, but I suspect the answer was more complex than he really wanted to hear.

“Converted to what?” is the first response. Islam presumably, yet here we have a huge assumption that we both agree on what that is. Why should I try to convert my non-Muslim friends when I often prefer them to the Muslims that I know? How will being Muslim change their lives for the better if they already display more of the Islamic virtues than most of the Muslims they are likely to meet? I share what I have found when they show Interest, but like me they often look at the Muslim world and wonder what we have in common. They find it hard to see living examples of the principles of which I speak.

I came to Islam through a search for Truth, but I found that in practice most Muslims give the truth a very low priority, and I can still be shocked by their facility for saying whatever they think suits the conversation best. Along with truth goes trustworthiness, surely an Islamic virtue, yet travelling through the Muslim world I met Muslims eager to sit down and discuss breaking an agreement not two minutes after sealing it with a pious recitation of Al Fatiha [first chapter of the Quran]. And closer to home how distasteful it is to belong to a community so notorious with regard to paying bills.

How about Mercy and Compassion - those words now repeatedly on my Muslim lips. In three years of travelling through the Muslim world, hardly a day passed without some stranger feeling he ought to instruct me in the principles of Islam. In all that time, in all these casual encounters, not only was mercy never given pride of place, but I actually don't recall it ever having been given a place at all. It is not necessary for my friends to look to the Muslim heartlands, when at home the Muslim example can be confused with “My Beautiful Launderette”.

But they see the Muslim heartlands every evening an TV, with their dictators and demagogues thick on the ground, oppressive and unjust societies, poverty and ignorance. There is no point in telling friends that Islam is a complete way of life. That it is a way to achieve joy and fulfillment in this life, hope and trust when approaching the next, and the perfect basis for a tolerant and peaceful society for all humanity. What can I answer when someone says “Show me!” - “Point to a Muslim country you can use as an example.”

My Islam sees in the prophet endless examples of forgiveness and tolerance, yet my friends see the mindless enforcement of rigid laws and eccentric punishments. I sometimes explain, but could just as well tell tales of Shari'a court corruption and injustice. My Islam insists on individual freedom, there is no compulsion, no priests are needed, and except for piety all men are equal. I kneel before no man, though I will kneel in prayer beside any, and my wealth and privilege is permitted, though charity is to be preferred, and the prophet chose to die a pauper.

My friends can understand and be drawn to such principles, but unless they can see this utopia in a more tangible form than my theories they are surely destined to remain cynical about their possible fulfillment. As long as I can't show them examples of Muslims living in a way they consider preferable to their own, I won't worry too much about their conversion. They see my Islam as a pipe dream, and who knows, perhaps they are right. The task is of course even harder when the friends concerned are women, as the clichéd platitudes of Islamic freedom and equality mean nothing when such highly visible inequities and oppression are impossible to hide.

Since I came back to this country there has been much talk in the Muslim community about an “identity crisis”. But the business successes of their family networks show that Muslims have no problem in identifying themselves with other Muslims, they just have trouble in identifying themselves with anything recognisable as Islam. In fact it seems that most Muslims would rather have as little to do with Islam as possible from the moment they are old enough to avoid it.

“Brother, let me tell you the most important thing in Islam”, said the stranger who had cornered me in a Lahore coffee bar. Far from agog, I waited to hear what it might be, though experience had taught me that it was unlikely to include any of the five pillars, truth or tolerance, or the like. “The most important thing in Islam” he said “is that your wife covers her head”, a view of Islam which I had heard often from many Muslim men. In other words the most important thing in the practice of Islam is to get your wife to do it, or your children, or your grandfather, or anybody but yourself!

Back in Britain I listened to the Muslim wails. “We are losing our children! By the time they leave school they are strangers, lost to us and to Islam! What can we do?” My usual response was often faced with dismay – “I can say what I think you should do, but it's unlikely that you will do it, because it involves changing yourselves. It involves changing the way you understand your Islam”. This is not suggesting wholesale innovation, as it might seem to imply, but quite the reverse. “It is necessary to revive that Muslim community which is buried under the debris of the manmade traditions of several generations, and which is crushed under the weight of those false laws and customs which are not remotely related to Islamic teachings, and which, in spite of all this, calls itself the ‘world of Islam’” (Qutb - Milestones). It's time to get back to the real thing - and I don't mean coca cola.

As I waited to begin my talk to the gathering of young Muslims I engaged in conversation with the group. A nice, quiet, attentive, well-mannered lot I thought. Then time to begin, but the mike wasn't working, and they waited “Testing! Testing! 123...” for while. Rather than just read numbers, it seemed more appropriate to read some Qur’an - after all, I was going to be talking about prayer. To my amazement, the first words of Fatihah seemed to fall in the room like a grenade, turning the group into a rabble. Punches flew, people rolled on the floor, conversations were attempted back and forth across the room, and Fatihah was generally taken as Time Out. If these were the ones at a Muslim conference, what on earth would the Muslim youth who weren't there have been like?

Now it's not that I'm a one for excessive displays of reverence, I see my religion more in a practical kind of way, but this was , which the Prophet called the best of the chapters of the Qur'an, and which Al-Ghazali called the key to Paradise. These words are not recited in every rakat of prayer without good reason. The outward displays of reverence, such as venerating a Qur'an, placing it high up and wrapped away, cannot do justice to the awe and wonder this surah deserves. But if a Muslim does not have a reason for this reverence which satisfies his understanding, the outward displays become hollow and easy to discard.

At the exhibition, the school kids of all ages were milling around looking at the World of Islam. As they tried to find the answers for their question sheets it was clear that Muslim kids knew little more than all the rest. No wonder our young people are losing their Islam. They have received so little to start off with. From out of the crowd around the Qur'an, one boy said to the teacher “I can read that!”, and proceeded to do so - more fluently than I could have done myself. The teacher was obviously highly impressed, but then asked the obvious question, “What does it mean?”, and the boys satisfaction turned to wry embarrassment. “I don't know”, he shrugged, and that was the end of that.

Now our young people are not stupid. Muslims have a better academic record than most groupings, as a glance at the honours board of your local school will show. The teacher's response was a common sense question, one that anyone might have expected in the situation. The embarrassment came from the common sense questions that remained unspoken, “Then why did you learn it?”, “What use is it to you?”, “Is this a skill without a purpose?” The teacher implicitly understood that these are questions you do not ask, and neither it seems do Muslims. It is as though Muslims are afraid that Islam can't stand up to common sense questions, yet Fatihah alone can satisfy whatever intellectual demands are put upon it and still remain inexhaustible. Are we passing on the key to the door of paradise, and forgetting to explain how you use it to open the lock.

If young Muslims are not shown the full richness of Islamic knowledge, we must not be surprised if they show more interest in fields where there seems further to explore. It will take some time before mosques are again centres of learning in all its aspects, places of research, experimentation and debate concerning our understanding of God and Creation. But when western educated young Muslim adults begin to search for their spiritual roots, God willing, they will uncover the means of reinvigorating the ummah, and leading them in the example of the Companions. If our Islam is not like theirs, filled with a sense of awe, wonder and excitement, can we really be doing justice to the service of Allah.

In such a situation, we will find new Muslims drawn towards the mosque. At the moment, amidst the ummah they are more likely to find Islam expressed as a cultural adjunct, where even the five pillars are avoided. But if the pillars are treated as unnecessary then what is needed to be Muslim, and if they are necessary how many Muslims are there in the ummah?

This goes to the heart of the conversation question, as we need to know what is essential for a person to be considered Muslim. Do Muslims in fact expect more from a convert than they do from those born in their cultures? How little does a westerner have to do before Muslims accept him as Muslim, and how far can he stray from their cultural norm before they consider him a disturbing intrusion and would rather that he stayed away? Is the reason there are not more converts because they would disturb the status quo?

But our effect on our surrounding society is a mirror to our behaviour and how well we represent Islam. We must live in a way that seems preferable and then at least partially satisfy the expectations of the inquisitive. Once upon a time, Islam spread like wildfire. In a few short years the Message spread to Morocco and to China. Millions welcomed the good news, and quickly shaped their lives around it.

Now Islam may be fast growing in the third world regions, but here in the West Muslims face a peculiar reaction to their invitations to join them in their faith, as almost nobody wants anything to do with it. If the message we are passing on no longer seems to have the same effect, is it not time to consider if we just have a communications problem, or whether we ourselves are abusing the message? Fortunately we still have the original - all we have to do is understand it!
Read more...

Tuesday, April 17, 2007

Why You Should Own A Gun

At Every End Comes A New Beginning
By Alan Caruba
April 17, 2007


The murders on the Virginia Tech campus, the worst such rampage in our history, might have been mitigated if just one member of the faculty or a student had the means to return fire.

I have owned guns for decades. On rare occasions, I have had to "show" one of my guns to people with bad intentions. Not surprisingly, they changed their plans to take my money and do me some harm. The Virginia Tech murders confirm the value of empowering ordinary citizens to carry a concealed weapon.

On March 9, I learned of a ruling in the case of Parker v. District of Columbia in which Senior Judge Lawrence H. Silberman wrote an opinion, with Judge Thomas B. Griffith concurring, that restored the Second Amendment to the citizens of the District and, by extension, to every citizen of these United States. Not since 1976, had residents of the District had the right to defend themselves with force of arms.

Judge Silberman wrote, "In sum, the phrase 'the right of the people', when read intratextually and in light of Supreme Court precedent, leads us to conclude that the right in question is individual."

As Alan Gottlieb, founder of the Second Amendment Foundation, noted succinctly, "The right of self-preservation was understood as the right to defend oneself against attacks by lawless individuals, or, if absolutely necessary, to resist and throw off a tyrannical government."

That is precisely why the Second Amendment says, "the right of the people to keep and bear arms shall not be infringed." Many States refused to ratify the proposed U.S. Constitution until this amendment and nine others were included. As Judge Silberman noted in his decision, the Second Amendment acknowledges "a right that pre-existed the Constitution" in the same way as freedom of speech.

Barely a week later in the Greenwich Village area of New York, David Garvin, carrying two semi-automatic firearms and a bag with 100 rounds of ammunition killed Alfredo Romero, a pizzeria employee, firing 15 rounds into him. Confronted by unarmed auxiliary police officers, Nicholas Todd Pekearo and Eugene Marshalik, he killed them as well. They were volunteer civilians who wear uniforms nearly identical to regular police. Finally, Garvin—a man with no psychiatric history—was shot dead by full-time police officers.

This is why police officers are always armed. I could not help wondering how that event would have been altered if any of his victims had been able to shoot back.

The Second Amendment Foundation notes that firearms are used defensively an estimated 2.5 million times every year, four times more than criminal uses. This represents some 2,575 lives protected and saved for every life lost to a gun. According to the national Safety Council, the loss of life to accidental firearm death is at its lowest point since records were begun nearly a hundred years ago.

In a nation where the rights conferred on individual Americans by the Second Amendment were just reaffirmed by the U.S. Court of Appeals in the District of Columbia, it's worth considering that, as of November 1997, there were an estimated 129 million privately owned firearms in the nation.

Guess what? After September 11, 2001, the one thing a lot of people did was to go out and buy a gun. If a bunch of fanatical Muslims could hijack four commercial airlines, destroy the World Trade Center towers, fly one into the Pentagon, and intended to fly the other possibly into the White House or the Capitol building, a lot of people decided that being able to shoot people with similar intentions was a very good idea.

Since then we have seen numerous incidents of "instant Jihad syndrome" where some Islamist decided to kill infidels who were just out for an hour at the local mall or otherwise peacefully going about their lives. And, yes, there are still criminals who use firearms. Now, however, Americans are not bound by some gun-banning law to be nothing more than victims.

Responsible gun ownership is a good idea. And if this is the first time you have heard about the recent decision of the Court of Appeals, that's because this story got buried by most mainline newspapers and by virtually all of the broadcast news media. No doubt this case will go to the Supreme Court at some point.

The writers of the U.S. Constitution understood the necessity for an armed citizenry. When only the government has guns, everyone else is just a slave. Gun-banners who would turn everyone's life and liberty over to the care of an all-powerful, central government, don't understand and don't agree with that.

As gun law expert, John M. Synder, put it, "Gun rights are human rights. Gun rights equate with the right to defend life and, therefore, with the very right to life itself."
Read more...

Sunday, April 15, 2007

Can liberty survive the income tax?

By Alan Keyes
April 12, 2007


Thanks to our nation's income tax system, individual Americans are not free--they are literally on parole.

If they fail to show up at the designated time and place to testify against themselves, they face the prospect that their material goods will be confiscated and their bodies seized and imprisoned. All this because they are guilty of the crime of doing what the most fundamental law of nature gives them the right to do--procure the means of preserving themselves and their loved ones.

A dilemma
Every year around this time, I find myself in a great quandary, a struggle between my sense of obedience to law and my sense of principle. The reason: it's time to file an income tax return.

Don't get me wrong. I have no trouble with the logic that effective government requires some form of taxation. What I can't understand is how we reconcile the clear provisions of our Constitution with the demand that every citizen testify under oath as to the amount of income they have earned in the previous year.

The Fifth Amendment to the Constitution provides that "No person . . . shall be compelled in any criminal case to be a witness against himself." The common understanding is that every American must file an income tax return or be prosecuted for the failure to do so.

Yet, it also appears to be the case that the contents of the return can be used in evidence against us if and when we are prosecuted for tax evasion or other income tax related crimes, including perjury, if we do not scrupulously comply with the letter of the voluminous tax code.

If filing is compulsory, we are being forced to provide testimony that may be used in evidence against us. This means that we are compelled to bear witness against ourselves, which the Constitution plainly forbids.

On the other hand, those who support the use of the income tax return will say that it does not violate the Fifth Amendment because filing the return is a voluntary act. But if this were truly the case, how could anyone be prosecuted for failure to file a tax return? Prosecution brings the force of law against the individual. Acts performed under the threat of prosecution are therefore not voluntary acts, but acts done under the threat of force.

Shallow legal arguments
I'm sure that the self-interested representatives of the legal profession will spring forward to assure me that the Courts have accepted the validity of the income tax system and cooperated with its enforcement mechanisms (by sanctioning the coercion used to enforce compliance). But we all know that this offers no assurance of constitutionality.

The Courts do not reliably represent the rule of law, since they willfully ignore the plain provisions of the Constitution that is the Supreme Law of the Land and the source of all their legitimate governmental power. The Courts blithely fabricate and impose requirements that are nowhere found in the Constitution (such as the separation of Church and state) and demand respect for rights that contradict its principles and stated purpose (like the so-called right to abortion).

Given this dismal track record, it's not at all hard to believe that they would cooperate in the imposition of an income tax regime that contradicts the Constitution's plainly worded guarantee against self-incrimination.

Respect for law
If we assume for a moment that the income tax regime is enforced by means that systematically disregard one of the most basic guarantees against governmental abuse of individuals, we realize that it puts conscientious citizens in a terrible position. If they choose to cooperate, they lend credence to the abuse--so that over the course of generations, people become more and more inured to it, and ignorant of the abrogation of right that it represents. Since habitual deference to law enforcement is the only basis for the filing requirement, such deference becomes the source of government authority, rather than the plainly declared and duly ratified will of the people expressed in the Constitution.

Habitual deference to the perceived force of law is far from being characteristic of a free people. Indeed, it is the reason large masses of people in every region of the world submitted to despotism and arbitrary tyranny in the centuries before the influence of Christianity led thinkers to articulate the doctrine of God-given inalienable rights.

We must be careful, of course, to keep in mind the distinction between habitual deference to the force of law and the habit of respect for the law. The first is quite simply the product of fear, the second is the fruit of good civic education.

Courts and all the trappings of so-called law are no strangers to tyranny. They have more often been its tools and servants than its enemies. The preponderance of human history offers examples of tyrannical and unjust regimes that cowed the masses into submission using handy symbols of power to shackle the mind, reinforced by the routine application of brute force.

Constitutional self-government is supposed to achieve respect for law on a very different basis, one that commands obedience on account of the assurance that the transcendent principles of right and justice will be respected in both the substance of the law and the procedures that enforce it.

The issue
Here then is the question: If the administration of the income tax departs from the principles of right and justice plainly set forth in the Constitution, does our cooperation with the income tax regime constitute and encourage the habitual deference to force without respect for right that has been a key support for sustaining tyrannical and unjust government? Does our willingness to cooperate help to shackle the mind and will of our children and of future generations, corrupting their understanding so that they will no longer recognize the distinction between legitimate government by law, and government by force masked with the handy symbols of law?

If we truly care about liberty--which is to say, constitutional self-government based upon respect for our God-given inalienable rights--are we obliged to cease this cooperation, even as, in the founding generation of our country, people ceased to cooperate with a system of taxation that contradicted those rights?

This challenge might be less urgent if the issue involved were not so critical to the material foundations of liberty. The American founders repeatedly alluded to Blackstone's pithy dictum: The power to tax is the power to destroy. How much more so when the mechanism of taxation itself involves the destruction of one of the most vital protections against governmental abuse of the individual: the protection against self-incrimination.

The income tax gives the government the power to attack or manipulate the material resource base of the whole people, determining what share will be controlled by the government and what will be left to the discretion of individuals. It also places every individual under a requirement to reveal to the government the sources of their individual sustenance, knowledge that could be used to attack or sever these lines of supply at will. It places every individual under a reporting requirement which, aside from being incompatible with the Fifth Amendment, can at any time become the basis for embroiling the individual in legal and bureaucratic challenges that consume their time and resources in ways that can threaten their own survival and that of the family and friends who rely on them.

By contrast, Montesquieu defined liberty as the ability to live without fear that others could assault your life, In our society, livelihood is life. Franklin Roosevelt appeared to agree when he cited freedom from fear among the four freedoms for which we did battle during the Second World War. Under our system of constitutional self-government, legitimate power means power consistent with liberty. The provisions of the Constitution aim to secure liberty by establishing a government whose powers are limited by respect for the Constitution's principles and requirements.

Free-market alternative
I admit that we would face an insoluble dilemma if the income tax were the only form of taxation capable of funding our government effectively. If this were so, it would mean that republican government consistent with the U.S. Constitution and its principles is impossible. The best we could hope for would be some less evil form of tyranny.

However, the success of the free enterprise economy made possible by respect for liberty means the existence of a huge marketplace, whose transactions generate an enormous exchange of goods and services. A system of taxation that imposed a modest toll (retail sales tax) on every such open and public exchange in the marketplace would more than suffice to fund the government, without the need to threaten the livelihood or constitutional right of any citizen. In the normal course of their voluntary business and other economic affairs, people would pay for government services, just as they pay for food, clothing, shelter, transportation, and entertainment.

If we care any longer to preserve the substance of democratic self-government, we need urgently to develop and put in place the free-market alternative to the liberty-destroying income tax system now in place. If we fail to do so, we leave the people, as individuals and as a whole, defenseless against the strategies of self-righteous, power-hungry elites who are already manipulating its administration to isolate and demoralize our people, crushing both their individual spirit and their ability to associate effectively for political action.
Read more...

Tax Day Confirms Economic Exploitation: Serfdom USA?

By Paul Craig Roberts
May 14, 2001


The Illusion of FreedomIs the United States a free country? Not by traditional measures. In the history of Western civilization, freedom has an economic meaning and a legal meaning. More and more, the United States fails both measures of freedom.

April 15 -- Tax Day -- has come to symbolize America's lack of economic freedom. Americans have no more claim to their incomes than did medieval serfs. The most successful Americans are comparable to slaves.

The long struggle for freedom was a struggle to own oneself and the value of one's labor. European serfs did not own their labor. Consequently, they were not free to sell their labor in markets for wages.

In the feudal age, labor, like land, was not bought and sold, but allocated according to a system of use rights. The lord of the manor could claim as much as one-third of a serf's working time. The remainder of the time, serfs would produce for their own households.

When serfs became owners of their labor, which they sold for wages, they became free men unaccountable to lords. Freed labor produced independent men because men had nothing to fall back on except their own strivings.

Free and independent men required accountable law. Law ceased to issue from the mouth of a lord or king. In time it became the work of elected representatives and bound the government itself. Freedom resulted from self-ownership and protection from arbitrary arrest, detention and dispossession.

A slave was worse off than a serf. A serf faced a maximum tax rate of 33 percent, but a slave was owned by another and had no claim to his own labor beyond subsistence.

Low-income Americans face a Social Security and Medicare tax rate of 15.3 percent, a federal income-tax rate of 15 percent, federal excise taxes, state income and sales taxes, and local property taxes. The combined tax rate exceeds the burden borne by a medieval serf.

Upper-income Americans are exploited like 19th century slaves. The uncapped Medicare tax places the top federal income-tax rate at 41.5 percent. Adding in Social Security, excise, state income and sales taxes, and property taxes produces a tax burden in excess of 50 percent.

President George W. Bush's tax cut merely raises America's successful class from slavery to serfdom. Unfair tax laws that tax phantom income push the burden on "the rich" to 75 or 80 percent of their incomes. Because of the way capital-gains taxes are levied on investments, in April many investors were taxed at twice the statutory maximum despite the collapse in the value of their investments.

To benefit from professional money management, millions of Americans invest in mutual funds and investment partnerships. According to proper accounting practice, the investor's basis is the price of the mutual-fund shares when he purchased them. Capital gains would be computed on any increase in share value at the time the investor exits the fund by selling his mutual-fund shares.

But this is not the way the tax system operates. A mutual-fund share is a composite of the stocks of many companies that comprise the fund's diversified portfolio. When the mutual-fund manager sells shares of specific stocks that have risen, the gains are apportioned to the individual fund owners and taxed even though the owners retain their mutual-fund shares and have realized no gains themselves.

This unfairness spelled disaster for investors on April 15. At the beginning of 2000, stock prices were still up. Fund managers, anticipating the market's decline, sold to protect the gains. Despite these early gains, by the end of 2000 the market's fall caused lower mutual-fund share prices. Millions of investors have losses of tens or hundreds of thousands of dollars but are faced with taxes on tens or hundreds of thousands of dollars of phantom capital gains realized only on paper by fund managers.

Where does the money come from to pay these taxes? Few incomes are large enough to support such a burden. The taxes only can be paid by selling off assets. Investors are faced with a capital levy -- a tax employed by tyrants. Just as Americans own less of their labor than feudal serfs, law no longer is their shield but a weapon in the hands of government.

The United States has become a tyranny, and it has happened on our watch.
Read more...

Saturday, April 14, 2007

The Evils of Ethanol

Peak Soil: Why cellulosic ethanol, biofuels are unsustainable and a threat to America

By Alice Friedemann
April 13, 2007




"The nation that destroys its soil destroys itself."
-President Franklin D. Roosevelt

Contents

  • Part 1. The Dirt on Dirt.
  • Part 2. The Poop on Ethanol: Energy Returned on Energy Invested (EROEI)
  • Part 3. Biofuel is a Grim Reaper.
  • Part 4. Biodiesel: Can we eat enough French Fries?
  • Part 5. If we can’t drink and drive, then burn baby burn. - Energy Crop Combustion
  • Part 6. The problems with Cellulosic Ethanol could drive you to drink.
  • Part 7. Where do we go from here?
  • Appendix. Department of Energy's Biofuel Roadmap Barriers
  • References

Part 1. The Dirt on Dirt

Ethanol is an agribusiness get-rich-quick scheme that will bankrupt our topsoil.

I'm from the government and I'm here to help.Nineteenth century western farmers converted their corn into whiskey to make a profit (Rorabaugh 1979). Archer Daniels Midland, a large grain processor, came up with the same scheme in the 20th century. But ethanol was a product in search of a market, so ADM spent three decades relentlessly lobbying for ethanol to be used in gasoline. Today ADM makes record profits from ethanol sales and government subsidies (Barrionuevo 2006).

The Department of Energy hopes to have biomass supply 5% of the nation’s power, 20% of transportation fuels, and 25% of chemicals by 2030. These combined goals are 30% of the current petroleum consumption (DOE Biomass Plan, DOE Feedstock Roadmap).

Fuels made from biomass are a lot like the nuclear powered airplanes the Air Force tried to build from 1946 to 1961, for billions of dollars. They never got off the ground. The idea was interesting -- atomic jets could fly for months without refueling. But the lead shielding to protect the crew and several months of food and water was too heavy for the plane to take off. The weight problem, the ease of shooting this behemoth down, and the consequences of a crash landing were so obvious, it’s amazing the project was ever funded, let alone kept going for 15 years.

Biomass fuels have equally obvious and predictable reasons for failure. Odum says that time explains why renewable energy provides such low energy yields compared to non-renewable fossil fuels. The more work left to nature, the higher the energy yield, but the longer the time required. Although coal and oil took millions of years to form into dense, concentrated solar power, all we had to do was extract and transport them (Odum 1996)

With every step required to transform a fuel into energy, there is less and less energy yield. For example, to make ethanol from corn grain, which is how all U.S. ethanol is made now, corn is first grown to develop hybrid seeds, which next season are planted, harvested, delivered, stored, and preprocessed to remove dirt. Dry-mill ethanol is milled, liquefied, heated, saccharified, fermented, evaporated, centrifuged, distilled, scrubbed, dried, stored, and transported to customers (McAloon 2000).

Fertile soil will be destroyed if crops and other "wastes" are removed to make cellulosic ethanol.

"We stand, in most places on earth, only six inches from desolation, for that is the thickness of the topsoil layer upon which the entire life of the planet depends" (Sampson 1981).

Loss of topsoil has been a major factor in the fall of civilizations (Sundquist 2005 Chapter 3, Lowdermilk 1953, Perlin 1991, Ponting 1993). You end up with a country like Iraq, formerly Mesopotamia, where 75% of the farm land became a salty desert.

Fuels from biomass are not sustainable, are ecologically destructive, have a net energy loss, and there isn’t enough biomass in America to make significant amounts of energy because essential inputs like water, land, fossil fuels, and phosphate ores are limited.

Soil Science 101 – There Is No "Waste" Biomass
Long before there was "Peak Oil", there was "Peak Soil". Iowa has some of the best topsoil in the world. In the past century, half of it’s been lost, from an average of 18 to 10 inches deep (Pate 2004, Klee 1991).

Productivity drops off sharply when topsoil reaches 6 inches or less, the average crop root zone depth (Sundquist 2005).

Crop productivity continually declines as topsoil is lost and residues are removed. (Al-Kaisi May 2001, Ball 2005, Blanco-Canqui 2006, BOA 1986, Calviño 2003, Franzleubbers 2006, Grandy 2006, Johnson 2004, Johnson 2005, Miranowski 1984, Power 1998, Sadras 2001, Troeh 2005, Wilhelm 2004).

On over half of America’s best crop land, the erosion rate is 27 times the natural rate, 11,000 pounds per acre (NCRS 2006). The natural, geological erosion rate is about 400 pounds of soil per acre per year (Troeh 2005). Some is due to farmers not being paid enough to conserve their land, but most is due to investors who farm for profit. Erosion control cuts into profits.

Erosion is happening ten to twenty times faster than the rate topsoil can be formed by natural processes (Pimentel 2006). That might make the average person concerned. But not the USDA -- they’ve defined erosion as the average soil loss that could occur without causing a decline in long term productivity.

Troeh (2005) believes that the tolerable soil loss (T) value is set too high, because it's based only on the upper layers -- how long it takes subsoil to be converted into topsoil. T ought to be based on deeper layers – the time for subsoil to develop from parent material or parent material from rock. If he’s right, erosion is even worse than NCRS figures.

Erosion removes the most fertile parts of the soil (USDA-ARS). When you feed the soil [with organic matter], you’re not feeding plants; you’re feeding the biota in the soil. Underground creatures and fungi break down fallen leaves and twigs into microscopic bits that plants can eat, and create tunnels air and water can infiltrate. In nature there are no elves feeding (fertilizing) the wild lands. When plants die, they’re recycled into basic elements and become a part of new plants. It’s a closed cycle. There is no bio-waste.

Soil creatures and fungi act as an immune system for plants against diseases, weeds, and insects – when this living community is harmed by agricultural chemicals and fertilizers, even more chemicals are needed in an increasing vicious cycle (Wolfe 2001).

There’s so much life in the soil, there can be 10 "biomass horses" underground for every horse grazing on an acre of pasture (Wardle 2004). If you dove into the soil and swam around, you’d be surrounded by miles of thin strands of mycorrhizal fungi that help plant roots absorb more nutrients and water, plus millions of creatures, most of them unknown. There’d be thousands of species in just a handful of earth –- springtails, bacteria, and worms digging airy subways. As you swam along, plant roots would tower above you like trees as you wove through underground skyscrapers.

Plants and creatures underground need to drink, eat, and breathe just as we do. An ideal soil is half rock, and a quarter each water and air. When tractors plant and harvest, they crush the life out of the soil, as underground apartments collapse 9/11 style. The tracks left by tractors in the soil are the erosion route for half of the soil that washes or blows away (Wilhelm 2004).

Corn Biofuel - Espcially Harmful
Corn Biofuel (i.e. butanol, ethanol, biodiesel) is especially harmful because:

  • Row crops such as corn and soy cause 50 times more soil erosion than sod crops [e.g., hay] (Sullivan 2004) or more (Al-Kaisi 2000), because the soil between the rows can wash or blow away. If corn is planted with last year's corn stalks left on the ground (no-till), erosion is less of a problem, but only about 20% of corn is grown no-till. Soy is usually grown no-till, but [leaves] insignificant residues to harvest for fuel.
  • Corn uses more water, insecticide, and fertilizer than most crops (Pimentel 2003). Due to high corn prices, continuous corn (corn crop after corn crop) is increasing, rather than rotation of nitrogen fixing (fertilizer) and erosion control sod crops with corn.
  • The government has studied the effect of growing continuous corn, and found it increases eutrophication by 189%, global warming by 71%, and acidification by 6% (Powers 2005).
  • Farmers want to plant corn on highly-erodible, water protecting, or wildlife sustaining Conservation Reserve Program land. Farmers are paid not to grow crops on this land. But with high corn prices, farmers are now asking the Agricultural Department to release them from these contracts so they can plant corn on these low-producing, environmentally sensitive lands (Tomson 2007).
  • Crop residues are essential for soil nutrition, water retention, and soil carbon. Making cellulosic ethanol from corn residues -- the parts of the plant we don’t eat (stalk, roots, and leaves) – removes water, carbon, and nutrients (Nelson, 2002, McAloon 2000, Sheehan, 2003).
These practices lead to lower crop production and ultimately deserts. Growing plants for fuel will accelerate the already unacceptable levels of topsoil erosion, soil carbon and nutrient depletion, soil compaction, water retention, water depletion, water pollution, air pollution, eutrophication, destruction of fisheries, siltation of dams and waterways, salination, loss of biodiversity, and damage to human health (Tegtmeier 2004).

Why are soil scientists absent from the biofuels debate?
I asked 35 soil scientists why topsoil wasn’t part of the biofuels debate. These are just a few of the responses from the ten who replied to my off-the-record poll (no one wanted me to quote them, mostly due to fear of losing their jobs):

"I have no idea why soil scientists aren't questioning corn and cellulosic ethanol plans. Quite frankly I’m not sure that our society has had any sort of reasonable debate about this with all the facts laid out. When you see that even if all of the corn was converted to ethanol and that would not provide more than 20% of our current liquid fuel use, it certainly makes me wonder, even before considering the conversion efficiency, soil loss, water contamination, food price problems, etc."

"Biomass production is not sustainable. Only business men and women in the refinery business believe it is."

"Should we be using our best crop land to grow gasohol and contribute further to global warming? What will our children grow their food on?"

"As agricultural scientists, we are programmed to make farmers profitable, and therefore profits are at the top of the list, and not soil, family, or environmental sustainability".

"Government policy since WWII has been to encourage overproduction to keep food prices down (people with full bellies don't revolt or object too much). It's hard to make a living farming commodities when the selling price is always at or below the break even point. Farmers have had to get bigger and bigger to make ends meet since the margins keep getting thinner and thinner. We have sacrificed our family farms in the name of cheap food. When farmers stand to make few bucks (as with biofuels) agricultural scientists tend to look the other way".

"You are quite correct in your concern that soil science should be factored into decisions about biofuel production. Unfortunately, we soil scientists have missed the boat on the importance of soil management to the sustainability of biomass production, and the long-term impact for soil productivity.
This is not a new debate. Here’s what scientists had to say decades ago:

Removing "crop residues…would rob organic matter that is vital to the maintenance of soil fertility and tilth, leading to disastrous soil erosion levels. Not considered is the importance of plant residues as a primary source of energy for soil microbial activity. The most prudent course, clearly, is to continue to recycle most crop residues back into the soil, where they are vital in keeping organic matter levels high enough to make the soil more open to air and water, more resistant to soil erosion, and more productive" (Sampson 1981).

"…Massive alcohol production from our farms is an immoral use of our soils since it rapidly promotes their wasting away. We must save these soils for an oil-less future" (Jackson 1980).
Natural Gas in Agriculture
When you take out more nutrients and organic matter from the soil than you put back in, you are "mining" the topsoil. The organic matter is especially important, since that’s what prevents erosion, improves soil structure, health, water retention, and gives the next crop its nutrition. Modern agriculture only addresses the nutritional component by adding fossil-fuel based fertilizers, and because the soil is unhealthy from a lack of organic matter, copes with insects and disease with oil-based pesticides.

"Fertilizer energy" is 28% of the energy used in agriculture (Heller, 2000). Fertilizer uses natural gas both as a feedstock and the source of energy to create the high temperatures and pressures necessary to coax inert nitrogen out of the air (nitrogen is often the limiting factor in crop production). This is known as the Haber-Bosch process, and it’s a big part of the green revolution that made it possible for the world’s population to grow from half a billion to 6.5 billion today (Smil 2000, Fisher 2001).

Our national security is at risk as we become dependent on unstable foreign states to provide us with increasingly expensive fertilizer. Between 1995 and 2005 we increased our fertilizer imports by more than 148% for Anhydrous Ammonia, 93% for Urea (solid), and 349 % of other nitrogen fertilizers (USDA ERS). Removing crop residues will require large amounts of imported fertilizer from potential cartels, potentially so expensive farmers won’t sell crops and residues for biofuels.

Improve national security and topsoil by returning residues to the land as fertilizer. We are vulnerable to high-priced fertilizer imports or "food for oil", which would greatly increase the cost of food for Americans.

Agriculture competes with homes and industry for fast depleting North American natural gas. Natural gas price increases have already caused over 280,000 job losses (Gerard 2006). Natural gas is also used for heating and cooking in over half our homes, generates 15% of electricity, and is a feedstock for thousands of products.

Return crop residues to the soil to provide organic fertilizer, don’t increase the need for natural gas fertilizers by removing crop residues to make cellulosic biofuels.


Part 2. The Poop on Ethanol

Energy Returned on Energy Invested (EROEI)

To understand the concept of EROEI, imagine a magician doing a variation on the rabbit-out-of-a-hat trick. He strides onstage with a rabbit, puts it into a top hat, and then spends the next five minutes pulling 100 more rabbits out. That is a pretty good return on investment!

Oil was like that in the beginning: one barrel of oil energy was required to get 100 more out, an Energy Returned on Energy Invested of 100:1.

When the biofuel magician tries to do the same trick decades later, he puts the rabbit into the hat, and pulls out only one pooping rabbit. The excrement is known as byproduct or coproduct in the ethanol industry.

Studies that show a positive energy gain for ethanol would have a negative return if the byproduct were left out (Farrell 2006). Here’s where byproduct comes from: if you made ethanol from corn in your back yard, you’d dump a bushel of corn, two gallons of water, and yeast into your contraption. Out would come 18 pounds of ethanol, 18 pounds of CO2, and 18 pounds of byproduct – the leftover corn solids.

Patzek and Pimentel believe you shouldn’t include the energy contained in the byproduct, because you need to return it to the soil to improve nutrition and soil structure (Patzek June 2006). Giampetro believes the byproduct should be treated as a "serious waste disposal problem and … an energy cost", because if we supplied 10% of our energy from biomass, we’d generate 37 times more livestock feed than is used (Giampetro 1997).

It’s even worse than he realized – Giampetro didn’t know most of this "livestock feed" can’t be fed to livestock because it’s too energy and monetarily expensive to deliver – especially heavy wet distillers byproduct, which is short-lived, succumbing to mold and fungi after 4 to 10 days. Also, byproduct is a subset of what animals eat. Cattle are fed byproduct in 20% of their diet at most. Iowa’s a big hog state, but commercial swine operations feed pigs a maximum of 5 to 10% byproduct (Trenkle 2006; Shurson 2003).

Worst of all, the EROEI of ethanol is 1.2:1 or 1.2 units of energy out for every unit of energy in, a gain of ".2". The "1" in "1.2" represents the liquid ethanol. What is the ".2" then? It’s the rabbit feces – the byproduct. So you have no ethanol for your car, because the liquid "1" needs to be used to make more ethanol. That leaves you with just the ".2" --- a bucket of byproduct to feed your horse – you do have a horse, don’t you? If horses are like cattle, then you can only use your byproduct for one-fifth of his diet, so you’ll need four supplemental buckets of hay from your back yard to feed him. No doubt the byproduct could be used to make other things, but that would take energy.

Byproduct could be burned, but it takes a significant amount of energy to dry it out, and requires additional handling and equipment. More money can be made selling it wet to the cattle industry, which is hurting from the high price of corn. Byproduct should be put back into the ground to improve soil nutrition and structure for future generations, not sold for short-term profit and fed to cattle who aren’t biologically adapted to eating corn.

The boundaries of what is included in EROEI calculations are kept as narrow as possible to reach positive results.

Researchers who find a positive EROEI for ethanol have not accounted for all of the energy inputs. For example, Shapouri admits the "energy used in the production of … farm machinery and equipment…, and cement, steel, and stainless steel used in the construction of ethanol plants, are not included". (Shapouri 2002). Or they assign overstated values of ethanol yield from corn (Patzek Dec 2006). Many, many, other inputs are left out.

Patzek and Pimentel have compelling evidence showing that about 30 percent more fossil energy is required to produce a gallon of ethanol than you get from it. Their papers are published in peer-reviewed journals where their data and methods are public, unlike many of the positive net energy results.

Infrastructure. Current EROEI figures don’t take into account the delivery infrastructure that needs to be built. There are 850 million combustion engines in the world today. Just to replace half the 245 million cars and light trucks in the United States with E85 vehicles will take 12-15 years, It would take over $544 million dollars of delivery ethanol infrastructure (Reynolds 2002 case B1) and $5 to $34 billion to revamp 170,000 gas stations nationwide (Heinson 2007).

The EROEI of oil when we built most of the infrastructure in this country was about 100:1, and it’s about 25:1 worldwide now. Even if you believe ethanol has a positive EROEI, you’d probably need at least an EROEI of at least 5 to maintain modern civilization (Hall 2003). A civilization based on ethanol’s ".2" rabbit poop would only work for coprophagous (dung-eating) rabbits.

Of the four articles that showed a positive net energy for ethanol in Farrells 2006 Science article, three were not peer-reviewed. The only positive peer-reviewed article (Dias De Oliveira, 2005) states "The use of ethanol as a substitute for gasoline proved to be neither a sustainable nor an environmentally friendly option" and the "environmental impacts outweigh its benefits". Dias De Oliveria concluded there’d be a tremendous loss of biodiversity, and if all vehicles ran on E85 and their numbers grew by 4% per year, by 2048, the entire country, except for cities, would be covered with corn.


Part 3. Biofuel is a Grim Reaper

The energy to remediate environmental damage is left out of EROEI calculations.

Global Warming
Soils contain twice the amount of carbon found in the atmosphere, and three times more carbon than is stored in all the Earth’s vegetation (Jones 2006).

Climate change could increase soil loss by 33% to 274%, depending on the region (O'Neal 2005).

Intensive agriculture has already removed 20 to 50% of the original soil carbon, and some areas have lost 70%. To maintain soil C levels, no crop residues at all could be harvested under many tillage systems or on highly erodible lands, and none to a small percent on no-till, depending on crop production levels (Johnson 2006).

Deforestation of temperate hardwood forests, and conversion of range and wetlands to grow energy and food crops increases global warming. An average of 2.6 million acres of crop land were paved over or developed every year between 1982 and 2002 in the USA (NCRS 2004). The only new crop land is forest, range, or wetland.

Rainforest destruction is increasing global warming. Energy farming is playing a huge role in deforestation, reducing biodiversity, water and water quality, and increasing soil erosion. Fires to clear land for palm oil plantations are destroying one of the last great remaining rainforests in Borneo, spewing so much carbon that Indonesia is third behind the United States and China in releasing greenhouse gases. Orangutans, rhinos, tigers and thousands of other species may be driven extinct (Monbiot 2005). Borneo palm oil plantation lands have grown 2,500% since 1984 (Barta 2006). Soybeans cause even more erosion than corn and suffer from all the same sustainability issues. The Amazon is being destroyed by farmers growing soybeans for food (National Geographic Jan 2007).and fuel (Olmstead 2006).

Biofuel from coal-burning biomass factories increases global warming (Farrell 2006). Driving a mile on ethanol from a coal-using biorefinery releases more CO2 than a mile on gasoline (Ward 2007). Coal in ethanol production is seen as a way to displace petroleum (Farrell 2006, Yacobucci 2006) and it’s already happening (Clayton 2006).

Current and future quantities of biofuels are too minisucle to affect global warming (ScienceDaily 2007).

Surface Albedo
"How much the sun warms our climate depends on how much sunlight the land reflects (cooling us), versus how much it absorbs (heating us). A plausible 2% increase in the absorbed sunlight on a switch grass plantation could negate the climatic cooling benefit of the ethanol produced on it. We need to figure out now, not later, the full range of climatic consequences of growing cellulose crops" (Harte 2007).

Eutrophication
Farm runoff of nitrogen fertilizers has contributed to the hypoxia (low oxygen) of rivers and lakes across the country and the dead zone in the Gulf of Mexico. Yet the cost of the lost shrimp and fisheries and increased cost of water treatment are not subtracted from the EROEI of ethanol.

Soil Erosion
Corn and soybeans have higher than average erosion rates. Eroded soil pollutes air, fills up reservoirs, and shortens the time dams can store water and generate electricity. Yet the energy of the hydropower lost to siltation, energy to remediate flood damage, energy to dredge dams, agricultural drainage ditches, harbors, and navigation channels, aren’t considered in EROEI calculations.

The majority of the best soil in the nation is rented and has the highest erosion rates. More than half the best farmland in the United States is rented:
65% in Iowa, 74% in Minnesota, 84% in Illinois, and 86% in Indiana. Owners seeking short-term profits have far less incentive than farmers who work their land to preserve soil and water. As you can see in the map below [click on image for original USDA site], the dark areas, which represent the highest erosion rates, are the same areas with the highest percentage of rented farmland. [Red - High, Yellow - Medium, Green - Low]



Water Pollution
Soil erosion is a serious source of water pollution, since it causes runoff of sediments, nutrients, salts, eutrophication, and chemicals that have had no chance to decompose into streams. This increases water treatment costs, increases health costs, kills fish with insecticides that work their way up the food chain (Troeh 2005).

Ethanol plants pollute water. They generate 13 liters of wastewater for every liter of ethanol produced (Pimentel March 2005)

Water depletion
Biofuel factories use a huge amount of water – four gallons for every gallon of ethanol produced. Despite 30 inches of rain per year in Iowa, there may not be enough water for corn ethanol factories as well as people and industry. Drought years will make matters worse (Cruse 2006).

Fifty percent of Americans rely on groundwater (Glennon 2002), and in many states, this groundwater is being depleted by agriculture faster than it is being recharged. This is already threatening current food supplies (Giampetro 1997). In some western irrigated corn acreage, groundwater is being mined at a rate 25% faster than the natural recharge of its aquifer (Pimentel 2003).

Biodiversity
Every acre of forest and wetland converted to crop land decreases soil biota, insect, bird, reptile, and mammal biodiversity.


Part 4. Biodiesel: Can we eat enough French Fries?

The idea we could run our economy on discarded fried food grease is very amusing. For starters, you’d need to feed 7 million heavy diesel trucks getting less than 8 mpg. Seems like we're all going to need to eat a lot more French Fries, but if anyone can pull it off, it would be Americans. Spin it as a patriotic duty and you'd see people out the door before the TV ad finished, the most popular government edict ever.

Scale. Where’s the Soy? Biodiesel is not ready for prime time. Although John Deere is working on fuel additives and technologies to burn more than 5% accredited biodiesel (made to ASTM D6751 specifications – vegetable oil does not qualify), that is a long way off. 52 billion gallons of diesel fuel are consumed a year in the United States, but only 75 million gallons of biodiesel were produced – two-tenths of one percent of what’s needed. To get the country to the point where gasoline was mixed with 5 percent biodiesel would require 64 percent of the soybean crop and 71,875 square miles of land (Borgman 2007), an area the size of the state of Washington. Soybeans cause even more erosion than corn.

Biodiesel shortens engine life. Currently, biodiesel concentrations higher than 5 percent can cause "water in the fuel due to storage problems, foreign material plugging filters…, fuel system seal and gasket failure, fuel gelling in cold weather, crankcase dilution, injection pump failure due to water ingestion, power loss, and, in some instances, can be detrimental to long engine life" (Borgman 2007). Biodiesel also has a short shelf life and it’s hard to store – it easily absorbs moisture (water is a bane to combustion engines), oxidizes, and gets contaminated with microbes. It increases engine NOx emissions (ozone) and has thermal degradation at high temperatures (John Deere 2006).

On the cusp of energy descent, we can’t even run the most vital aspect of our economy, agricultural machines, on "renewable" fuels. John Deere tractors can run on no more than 5% accredited biodiesel (Borgman 2007). Perhaps this is unintentionally wise – biofuels have yet to be proven viable, and mechanization may not be a great strategy in a world of declining energy.


Part 5. If we can’t drink and drive, then burn baby burn.

Energy Crop Combustion
Wood is a crop, subject to the same issues as corn, and takes a lot longer to grow. Burning wood in your stove at home delivers far more energy than the logs would if converted to biofuels (Pimentel 2005). Wood was scarce in America when there were just 75 million people. Electricity from biomass combustion is not economic or sustainable.

Combustion pollution is expensive to control. Some biomass has absorbed heavy metals and other pollutants from sources like coal power plants, industry, and treated wood. Combustion can release chlorinated dioxins, benzofurans, polycyclic aromatic hydrocarbons, cadmium, mercury, arsenic, lead, nickel, and zinc.

Combustion contributes to global warming by adding nitrogen oxides and the carbon stored in plants back into the atmosphere, as well as removes agriculturally essential nitrogen and phosphate (Reijnders 2006)

EROEI in doubt. Combustion plants need to produce, transport, prepare, dry, burn, and control toxic emissions. Collection is energy intensive, requiring some combination of bunchers, skidders, whole-tree choppers, or tub grinders, and then hauling it to the biomass plant. There, the feedstock is chopped into similar sizes and placed on a conveyor belt to be fed to the plant. If biomass is co-fired with coal, it needs to be reduced in size, and the resulting fly ash may not be marketable to the concrete industry (Bain 2003). Any alkali or chlorine released in combustion gets deposited on the equipment, reducing overall plant efficiencies, as well as accelerating corrosion and erosion of plant components, requiring high replacement and maintenance energy.
Processing materials with different physical properties is energy intensive, requiring sorting, handling, drying, and chopping. It’s hard to optimize the pyrolysis, gasification, and combustion processes if different combustible fuels are used. Urban waste requires a lot of sorting, since it often has material that must be removed, such as rocks, concrete and metal. The material that can be burned must also be sorted, since it varies from yard trimmings with high moisture content to chemically treated wood.

Biomass combustion competes with other industries that want this material for construction, mulch, compost, paper, and other profitable ventures, often driving the price of wood higher than a wood-burning biomass plant can afford. Much of the forest wood that could be burned is inaccessible due to a lack of roads.

Efficiency is lowered if material with a high water content is burned, like fresh wood. Different physical and chemical characteristics in fuel can lead to control problems (Badger 2002). When wet fuel is burned, so much energy goes into vaporizing the water that very little energy emerges as heat, and drying takes time and energy.

Material is limited and expensive. California couldn’t use crop residues due to low bulk density. In 2000, the viability of California biomass enterprise was in serious doubt because the energy to produce biomass was so high due to the small facilities and high cost of collecting and transporting material to the plants (Bain 2003).


Part 6. The problems with Cellulosic Ethanol could drive you to drink.

Many plants want animals to eat their seed and fruit to disperse them. Some seeds only germinate after going through an animal gut and coming out in ready-made fertilizer. Seeds and fruits are easy to digest compared to the rest of the plant, that's why all of the commercial ethanol and biodiesel are made from the yummy parts of plants, the grain, rather than the stalks, leaves, and roots.

But plants don’t want to be entirely devoured. They’ve spent hundreds of millions of years perfecting structures that can’t easily be eaten. Be thankful plants figured this out, or everything would be mown down to bedrock.

If we ever did figure out how to break down cellulose in our back yard stills, it wouldn't be long before the 6.5 billion people on the planet destroyed the grasslands and forests of the world to power generators and motorbikes (Huber 2006)

Don Augenstein and John Benemann, who’ve been researching biofuels for over 30 years, are skeptical as well. According to them, "…severe barriers remain to ethanol from lignocellulose. The barriers look as daunting as they did 30 years ago".

Benemann says the EROEI can be easily determined to be about five times as much energy required to make cellulosic ethanol than the energy contained in the ethanol.

The success of cellulosic ethanol depends on finding or engineering organisms that can tolerate extremely high concentrations of ethanol. Augenstein argues that this creature would already exist if it were possible. Organisms have had a billion years of optimization through evolution to develop a tolerance to high ethanol levels (Benemann 2006). Someone making beer, wine, or moonshine would have already discovered this creature if it could exist.

The range of chemical and physical properties in biomass, even just corn stover (Ruth 2003, Sluiter 2000), is a challenge. It’s hard to make cellulosic ethanol plants optimally efficient, because processes can’t be tuned to such wide feedstock variation.

Where will the Billion Tons of Biomass for Cellulosic Fuels Come From?
The government believes there is a billion tons of biomass "waste" to make cellulosic biofuels, chemicals, and generate electricity with.

The United States lost 52 million acres of cropland between 1982 and 2002 (NCRS 2004). At that rate, all of the cropland will be gone in 140 years.

There isn’t enough biomass to replace 30% of our petroleum use. The potential biomass energy is miniscule compared to the fossil fuel energy we consume every year, about 105 exa joules (EJ) in the USA. If you burned every living plant and its roots, you’d have 94 EJ of energy and we could all pretend we lived on Mars. Most of this 94 EJ of biomass is already being used for food and feed crops, and wood for paper and homes. Sparse vegetation and the 30 EJ in root systems are economically unavailable – leaving only a small amount of biomass unspoken for (Patzek June 2006).

Over 25% of the "waste" biomass is expected to come from 280 million tons of corn stover. Stover is what’s left after the corn grain is harvested. Another 120 million tons will come from soy and cereal straw (DOE Feedstock Roadmap, DOE Biomass Plan).

There isn’t enough no-till corn stover to harvest. The success of biofuels depends on corn residues. About 80% of farmers disk corn stover into the land after harvest. That renders it useless -- the crop residue is buried in mud and decomposing rapidly.

Only the 20 percent of farmers who farm no-till will have stover to sell. The DOE Billion Ton vision assumes all farmers are no-till, 75% of residues will be harvested, and fantasizes corn and wheat yields 50% higher than now are reached (DOE Billion Ton Vision 2005).

Many tons will never be available because farmers won’t sell any, or much of their residue (certainly not 75%).

Many more tons will be lost due to drought, rain, or loss in storage.

Sustainable harvesting of plants is only 1/200th at best. [? Sustainable harvesting of plants only captures 1/200th of the solar energy they receive, at best. -EB ed] Plants can only fix a tiny part of solar energy into plant matter every year -- about one-tenth to one-half of one percent new growth in temperate climates.

To prevent erosion, you could only harvest 51 million tons of corn and wheat residues, not 400 million tons (Nelson, 2002). Other factors, like soil structure, soil compression, water depletion, and environmental damage weren’t considered. Fifty one million tons of residue could make about 3.8 billion gallons of ethanol, less than 1% of our energy needs.

Using corn stover is a problem, because corn, soy, and other row crops cause 50 times more soil erosion than sod crops (Sullivan 2004) or more (Al-Kaisi 2000), and corn also uses more water, insecticides and fertilizers than most crops (Pimentel 2003).

The amount of soy and cereal straw (wheat, oats, etc) is insignificant. It would be best to use cereal grain straw, because grains use far less water and cause far less erosion than row crops like corn and soybeans. But that isn’t going to happen, because the green revolution fed billions more people by shortening grain height so that plant energy went into the edible seed, leaving little straw for biofuels. Often 90% of soybean and cereal straw is grown no-till, but the amount of cereal straw is insignificant and the soybean residues must remain on the field to prevent erosion.

Limitations on Energy Crops

Poor, erodible land. There aren’t enough acres of land to grow significant amounts of energy crops. Potential energy crop land is usually poor quality or highly erodible land that shouldn’t be harvested. Farmers are often paid not to farm this unproductive land. Many acres in switchgrass are being used for wildlife and recreation.

Few suitable bio-factory sites. Biorefineries can’t be built just anywhere – very few sites could be found to build switchgrass plants in all of South Dakota (Wu 1998). Much of the state didn’t have enough water or adequate drainage to build an ethanol factory. The sites had to be on main roads, near railroad and natural gas lines, out of floodplains, on parcels of at least 40 acres to provide storage for the residues, have electric power, and enough biomass nearby to supply the plant year round.

No energy crop farmers or investors. Farmers won’t grow switchgrass until there’s a switchgrass plant. Machines to harvest and transport switchgrass efficiently don’t exist yet (Barrionuevo 2006). The capital to build switchgrass plants won’t materialize until there are switchgrass farmers. Since "ethanol production using switchgrass required 50% more fossil energy than the ethanol fuel produced" (Pimentel 2005), investors for these plants will be hard to find.

Energy crops are subject to Liebig’s law of the minimum too. Switchgrass may grow on marginal land, but it hasn’t escaped the need for minerals and water. Studies have shown the more rainfall, the more switchgrass you get, and if you remove switchgrass, you’re going to need to fertilize the land to replace the lost biomass, or you’ll get continually lower yields of switchgrass every time you harvest the crop (Vogel 2002). Sugar cane has been touted as an "all you need is sunshine" plant. But according to the FAO, the nitrogen, phosphate, and potassium requirements of sugar cane are roughly similar to maize (FAO 2004).

Bioinvasive Potential. These fast-growing disease-resistant plants are potentially bioinvasive, another kudzu. Bioinvasion costs our country billions of dollars a year (Bright, 1998). Johnson grass was introduced as a forage grass and it’s now an invasive weed in many states. Another fast-growing grass, Miscanthus, is now being proposed as a biofuel. It’s been described as "Johnson grass on steroids" (Raghu 2006).

Sugar cane: too little to import. Brazil uses oil for 90% of their energy, and 17 times less oil [than the U.S.] (Jordan 2006). Brazilian ethanol production in 2003 was 3.3 billion gallons, about the same as the USA in 2004, or 1% of our transportation energy. Brazil uses 85% of their cane ethanol, leaving only 15% for export.

Sugar Cane: can’t grow it here. Although we grow some sugar cane despite tremendous environmental damage (WWF) in Florida thanks to the sugar lobby, we’re too far north to grow a significant amount of sugar cane or other fast growing C4 plants.

Wood ethanol is an energy sink. Ethanol production using wood biomass required 57% more fossil energy than the ethanol fuel produced (Pimentel 2005).

Wood is a nonrenewable resource. Old-growth forests had very dense wood, with a high energy content, but wood from fast-growing plantations is so low-density and low calorie it’s not even good to burn in a fireplace. These plantations require energy to plant, fertilize, weed, thin, cut, and deliver. The trees are finally available for use after 20 to 90 years – too long for them to be considered a renewable fuel (Odum 1996). Nor do secondary forests always come back with the vigor of the preceding forest due to soil erosion, soil nutrition depletion, and mycorrhizae destruction (Luoma 1999).

There’s not enough wood to fuel a civilization of 300 million people. Over half of North America was deforested by 1900, at a time when there were only 75 million people (Williams 2003). Most of this was from home use. In the 18th century the average Northeastern family used 10 to 20 cords per year. At least one acre of woods is required to sustainably harvest one cord of wood (Whitney 1994).

Energy crop limits. Energy crops may not be sustainable due to water, fertilizer, and harvesting impacts on the soil (DOE Biomass Roadmap 2005). Like all other monoculture crops, ultimately yields of energy crops will be reduced due to "pest problems, diseases, and soil degradation" (Giampetro, 1997).

Energy crop monoculture. The "physical and chemical characteristics of feedstocks vary by source, by year, and by season, increasing processing costs" (DOE Feedstock Roadmap). That will encourage the development of genetically engineered biomass to minimize variation. Harvesting economies of scale will mean these crops will be grown in monoculture, just as food crops are. That’s the wrong direction – to farm with less energy there’ll need to be a return to rotation of diverse crops, and composted residues for soil nutrition, pest, and disease resistance.

A way around this would be to spend more on researching how cellulose digesting microbes tackle different herbaceous and woody biomass. The ideal energy crop would be a perennial, tall-grass prairie / herbivore ecosystem (Tilman 2006).

Farmers aren’t stupid: They won’t sell their residues. Farmers are some of the smartest people on earth or they’d soon go out of business. They have to know everything from soil science to commodity futures.

Crop production is reduced when residues are removed from the soil. Why would farmers want to sell their residues?

Erosion, water, compression, nutrition. Harvesting of stover on the scale needed to fuel a cellulosic industry won’t happen because farmers aren’t stupid, especially the ones who work their own land. Although there is a wide range of opinion about the amount of residue that can be harvested safely without causing erosion, loss of soil nutrition, and soil structure, many farmers will want to be on the safe side, and stick with the studies showing that 20% (Nelson, 2002) to 30% (McAloon et al., 2000; Sheehan, 2003) at most can be harvested, not the 75% agribusiness claims is possible. Farmers also care about water quality (Lal 1998, Mann et al, 2002). And farmers will decide that permanent soil compression is not worth any price (Wilhelm 2004). As prices of fertilizer inexorably rise due to natural gas depletion, it will be cheaper to return residues to the soil than to buy fertilizer.

Residues are a headache. The further the farmer is from the biorefinery or railroad, the slimmer the profit, and the less likely a farmer will want the extra headache and cost of hiring and scheduling many different harvesting, collection, baling, and transportation contractors for corn stover.

Residues are used by other industries. Farm managers working for distant owners are more likely to sell crop residues since they’re paid to generate profits, not preserve land. But even they will sell to the highest bidder, which might be the livestock or dairy industries, furfural factories, hydromulching companies, biocomposite manufacturers, pulp mills, or city dwellers faced with skyrocketing utility bills, since the high heating value of residue has twice the energy of the converted ethanol.

Investors aren’t stupid either. If farmers can’t supply enough crop residues to fuel the large biorefinery in their region, who will put up the capital to build one?


Can the biomass be harvested, baled, stored, and transported economically?

Harvesting. Sixteen ton tractors harvest corn and spit out stover. Many of these harvesters are contracted and will continue to collect corn in the limited harvest time, not stover. If tractors are still available, the land isn’t wet, snow doesn’t fall, and the stover is dry, three additional tractor runs will mow, rake, and bale the stover (Wilhelm 2004). This will triple the compaction damage to the soil (Troeh 2005), create more erosion-prone tire tracks, increase CO2 emissions, add to labor costs, and put unwanted foreign matter into the bale (soil, rocks, baling wire, etc).

So biomass roadmaps call for a new type of tractor or attachment to harvest both corn and stover in one pass. But then the tractor would need to be much larger and heavier, which could cause decades-long or even permanent soil compaction. Farmers worry that mixing corn and stover might harm the quality of the grain. And on the cusp of energy descent, is it a good idea to build an even larger and more complex machine?

If the stover is harvested, the soil is now vulnerable to erosion if it rains, because there’s no vegetation to protect the soil from the impact of falling raindrops. Rain also compacts the surface of the soil so that less water can enter, forcing more to run off, increasing erosion. Water landing on dense vegetation soaks into the soil, increasing plant growth and recharging underground aquifers. The more stover left on the land, the better.

Baling. The current technology to harvest residues is to put them into bales of hay. Hay is a dangerous commodity -- it can spontaneously combust, and once on fire, can’t be extinguished, leading to fire loss and increased fire insurance costs. Somehow the bales have to be kept from combusting during the several months it takes to dry them from 50 to 15 percent moisture. A large, well drained, covered area is needed to vent fumes and dissipate heat. If the bales get wet they will compost (Atchison 2004).

Baling was developed for hay and has been adapted to corn stover with limited success. Biorefineries need at least half a million tons of biomass on hand to smooth supply bumps, much greater than any bale system has been designed for. Pelletization is not an option, it’s too expensive. Other options need to be found. (DOE Feedstock Roadmap)

To get around the problems of exploding hay bales, wet stover could be collected. The moisture content needs to be around 60 percent, which means a lot of water will be transported, adding significantly to the delivery cost.

Storage. Stover needs to be stored with a moisture content of 15% or less, but it’s typically 35-50%, and rain or snow during harvest will raise these levels even higher (DOE Feedstock Roadmap). If it’s harvested wet anyhow, there’ll be high or complete losses of biomass in storage (Atchison 2004).

Residues could be stored wet, as they are in ensilage, but a great deal of R&D are needed and to see if there are disease, pest, emission, runoff, groundwater contamination, dust, mold, or odor control problems. The amount of water required is unknown. The transit time must be short, or aerobic microbial activity will damage it. At the storage site, the wet biomass must be immediately washed, shredded, and transported to a drainage pad under a roof for storage, instead of baled when drier and left at the farm. The wet residues are heavy, making transportation costlier than for dry residues, perhaps uneconomical. It can freeze in the winter making it hard to handle. If the moisture is too low, air gets in, making aerobic fermentation possible, resulting in molds and spoilage.

Transportation. Although a 6,000 dry ton per day biorefinery would have 33% lower [unit] costs than [one that processed 2,000 dry tons per day], the price of gas and diesel limits the distance the biofuel refinery can be from farms, since the bales are large in volume but low in density, which limits how many bales can be loaded onto a truck and transported economically.

So the "economy of scale" achieved by a very large refinery has to be reduced to a 2,000 dry ton per day biorefinery. Even this smaller refinery would require 200 trucks per hour delivering biomass during harvest season (7 x 24), or 100 trucks per day if satellite sites for storage are used. This plant would need 90% of the no-till crop residues from the surrounding 7,000 square miles with half the farmers participating. Yet less than 20% of farmers practice no-till corn and not all of the farmland is planted in corn. When this biomass is delivered to the biorefinery, it will take up at least 100 acres of land stacked 25 feet high.

The average stover haul to the biorefinery would be 43 miles one way if these rosy assumptions all came true (Perlack 2002). If less than 30% of the stover is available, the average one-way trip becomes 100 miles and the biorefinery is economically impossible.

There is also a shortage of truck drivers, the rail system can’t handle any new capacity, and trains are designed to operate between hubs, not intermodally (truck to train to truck). The existing transportation system has not changed much in 30 years, yet this congested, inadequate infrastructure somehow has to be used to transport huge amounts of ethanol, biomass, and byproducts (Haney 2006).


Cellulosic Biorefineries (see Appendix for more barriers)

There are over 60 barriers to be overcome in making cellulosic ethanol in Section III of the DOE "Roadmap for Agriculture Biomass Feedstock Supply in the United States" (DOE Feedstock Roadmap 2003). For example:

"Enzyme Biochemistry.Enzymes that exhibit high thermostability and substantial resistance to sugar end-product inhibition will be essential to fully realize enzyme-based sugar platform technology. The ability to develop such enzymes and consequently very low cost enzymatic hydrolysis technology requires increasing our understanding of the fundamental mechanisms underlying the biochemistry of enzymatic cellulose hydrolysis, including the impact of biomass structure on enzymatic cellulose decrystallization. Additional efforts aimed at understanding the role of cellulases and their interaction not only with cellulose but also the process environment is needed to affect further reductions in cellulase cost through improved production".
No wonder many of the issues with cellulosic ethanol aren’t discussed – there’s no way to express the problems in a sound bite.

It may not be possible to reduce the complex cellulose digesting strategies of bacteria and fungi into microorganisms or enzymes that can convert cellulose into ethanol in giant steel vats, especially given the huge physical and chemical variations in feedstock. The field of metagenomics is trying to create a chimera from snips of genetic material of cellulose-digesting bacteria and fungi. That would be the ultimate Swiss Army-knife microbe, able to convert cellulose to sugar and then sugar to ethanol.

There’s also research to replicate termite gut cellulose breakdown. Termites depend on fascinating creatures called protists in their guts to digest wood. The protists in turn outsource the work to multiple kinds of bacteria living inside of them. This is done with energy (ATP) and architecture (membranes) in a system that evolved over millions of years. If the termite could fire the protists and work directly with the bacteria, that probably would have happened 50 million years ago. This process involves many kinds of bacteria, waste products, and other complexities that may not be reducible to an enzyme or a bacteria.

Finally, ethanol must be delivered. A motivation to develop cellulosic ethanol is the high delivery cost of corn grain ethanol from the Midwest to the coasts, since ethanol can’t be delivered cheaply through pipelines, but must be transported by truck, rail, or barge (Yacobucci 2003).

The whole cellulosic ethanol enterprise falls apart if the energy returned is less than the energy invested or even one of the major stumbling blocks can't be overcome. If there isn’t enough biomass, if the residues can’t be stored without exploding or composting, if the oil to transport low-density residues to biorefineries or deliver the final product is too great, if no cheap enzymes or microbes are found to break down lignocellulose in wildly varying feedstocks, if the energy to clean up toxic byproducts is too expensive, or if organisms capable of tolerating high ethanol concentrations aren’t found, if the barriers in Appendix A can’t be overcome, then cellulosic fuels are not going to happen.

If the obstacles can be overcome, but we lose topsoil, deplete aquifers, poison the land, air, and water -- what kind of Faustian bargain is that?

Scientists have been trying to solve these issues for over thirty years now.

Nevertheless, this is worthy of research money, but not public funds for commercial refineries until the issues above have been solved. This is the best hope we have for replacing the half million products made from and with fossil fuels, and for liquid transportation fuels when population falls to pre-coal levels.


Part 7. Where do we go from here?

Subsidies and Politics
How come there are over 116 ethanol plants with 79 under construction and 200 more planned? The answer: subsidies and tax breaks.

Federal and state ethanol subsidies add up to 79 cents per liter (McCain 2003), with most of that going to agribusiness, not farmers. There is also a tax break of 5.3 cents per gallon for ethanol (Wall Street Journal 2002). An additional 51 cents per gallon goes mainly to the oil industry to get them to blend ethanol with gasoline.

In addition to the $8.4 billion per year subsidies for corn and ethanol production, the consumer pays an additional amount for any product with corn in it (Pollan 20005), beef, milk, and eggs, because corn diverted to ethanol raises the price of corn for the livestock industry.

Worst of all, the subsidies may never end, because Iowa plays a leading role in who’s selected to be the next president. John McCain has softened his stand on ethanol (Birger 2006). All four senators in California and New York have pointed out that "ethanol subsidies are nothing but a way to funnel money to agribusiness and corn states at the expense of the rest of the country" (Washington Post 2002).

"Once we have a corn-based technology up and running the political system will protect it," said Lawrence J. Goldstein, a board member at the Energy Policy Research Foundation. "We cannot afford to have 15 billion gallons of corn-based ethanol in 2015, and that’s exactly where we are headed" (Barrionuevo 2007).

Conclusion
Visual Proof that Ethanol is EvilSoil is the bedrock of civilization (Perlin 1991, Ponting 1993). Biofuels are not sustainable or renewable. Why would we destroy our topsoil, increase global warming, deplete and pollute groundwater, destroy fisheries, and use more energy than what’s gained to make ethanol? Why would we do this to our children and grandchildren?

Perhaps it’s a combination of pork barrel politics, an uninformed public, short-sighted greedy agribusiness corporations, jobs for the Midwest, politicians getting too large a percent of their campaign money from agribusiness (Lavelle 2007), elected leaders without science degrees, and desperation to provide liquid transportation fuels (Bucknell 1981, Hirsch 2005).

But this madness puts our national security at risk. Destruction of topsoil and collateral damage to water, fisheries, and food production will result in less food to eat or sell for petroleum and natural gas imports. Diversion of precious dwindling energy and money to impossible solutions is a threat to our nations’ future.


[Recommendations]

Fix the unsustainable and destructive aspects of industrial agriculture.
At least some good would come out of the ethanol fiasco if more attention were paid to how we grow our food. The effects of soil erosion on crop production have been hidden by mechanization and intensive use of fossil fuel fertilizers and chemicals on crops bred to tolerate them. As energy declines, crop yields will decline as well.

Jobs. Since part of what’s driving the ethanol insanity is job creation, divert the subsidies and pork barrel money to erosion control and sustainable agriculture. Maybe Iowa will emerge from its makeover looking like Provence, France, and volunteers won’t be needed to hand out free coffee at rest areas along I-80.

Continue to fund cellulosic ethanol research, focusing on how to make 500,000 fossil-fuel-based products (i.e. medicine, chemicals, plastics, etc) and fuel for when population declines to pre-fossil fuel carrying capacity. The feedstock should be from a perennial, tall-grass prairie herbivore ecosystem, not food crops. But don’t waste taxpayer money to build demonstration or commercial plants until most of the research and sustainability barriers have been solved.

California should not adopt the E10 ethanol blend for global warming bill AB 32. Biofuels are at best neutral and at worst contribute to global warming. A better early action item would be to favor low-emission vehicle sales and require all new cars to have energy efficient tires.

Take away the E85 loophole that allows Detroit automakers to ignore CAFE standards and get away with selling even more gas guzzling vehicles (Consumer Reports 2006). Raise the CAFE standards higher immediately.

There are better, easier ways to stretch out petroleum than adding ethanol to it. Just keeping tires inflated properly would save more energy than all the ethanol produced today. Reducing the maximum speed limit to 55, consumer driving tips, truck stop electrification, and many other measures can save far more fuel in a shorter time than biofuels ever will, far less destructively. Better yet, Americans can bike or walk, which will save energy used in the health care system.

Let’s stop the subsidies and see if ethanol can fly.

Reform our non-sustainable agricultural system

  • Give integrated pest management and organic agriculture research more funding
  • The National Resources Conservation Service (NCRS) and other conservation agencies have done a superb job of lowering the erosion rate since the dustbowl of the 1930’s. Give these agencies a larger budget to further the effort.
  • To promote land stewardship, change taxes and zoning laws to favor small family farms. This will make possible the "social, economic, and environmental diversity necessary for agricultural and ecosystem stability" (Opie 2000).
  • Make the land grant universities follow the directive of the Hatch Act of 1887 to improve the lives of family farmers. Stop funding agricultural mechanization and petrochemical research and start funding how to fight pests and disease with diverse crops, crop rotations, and so on (Hightower 1978).
  • Don’t allow construction of homes and businesses on prime farm land.  Integrate livestock into the crop rotation.
  • Teach family farmers and suburban homeowners how to maximize food production in limited space with Rodale and Biointensive techniques.
  • Since less than 1 percent of our elected leaders and their staff have scientific backgrounds, educate them in systems ecology, population ecology, soil, and climate science. So many of the important issues that face us need scientific understanding and judgment.
  • Divert funding from new airports, roads, and other future senseless infrastructure towards research in solar, wind, and cellulosic products. We’re at the peak of scientific knowledge and our economic system hasn’t been knocked flat yet by energy shortages – if we don’t do the research now, it may never happen.


It’s not unreasonable to expect farmers to conserve the soil, since the fate of civilization lies in their hands. But we need to pay farmers for far more than the cost of growing food so they can afford to conserve the land. In an oil-less future, healthy topsoil will be our most important resource.

Responsible politicians need to tell Americans why their love affair with the car can’t continue. Leaders need to make the public understand that there are limits to growth, and an increasing population leads to the "Tragedy of the Commons". Even if it means they won’t be re-elected. Arguing this amidst the church of development that prevails this is like walking into a Bible-belt church and telling the congregation God doesn’t exist, but it must be done.

We are betting the farm on making cellulosic fuels work at a time when our energy and financial resources are diminishing. No matter how desperately we want to believe that human ingenuity will invent liquid or combustible fuels despite the laws of thermodynamics and how ecological systems actually work, the possibility of failure needs to be contemplated.

Living in the moment might be enlightenment for individuals, but for a nation, it’s disastrous. Is there a Plan B if biofuels don’t work? Coal is not an option. CO2 levels over 1,000 ppm could lead to the extinction of 95% of life on the planet (Lynas 2007, Ward 2006, Benton 2003).

Here we are, on the cusp of energy descent, with mechanized petrochemical farms. We import more farm products now than we sell abroad (Rohter 2004). Suburban sprawl destroys millions of acres of prime farm land as population grows every year. We’ve gone from 7 million family farms to 2 million much larger farms and destroyed a deeply satisfying rural way of life.

There need to be plans for de-mechanization of the farm economy if liquid fuels aren’t found. There are less than four million horses, donkeys, and mules in America today. According to Bucknell, if the farm economy were de-mechanized, you'd need at least 31 million farm workers and 61 million horses. (Bucknell 1981)

The population of the United States has grown over 25 percent since Bucknell published Energy and the National Defense. To de-mechanize now, we'd need 39 million farm workers and 76 million horses. The horsepower represented by just farm tractors alone is equal to 400 million horses. It’s time to start increasing horse and oxen numbers, which will leave even less biomass for biorefineries.

We need to transition from petroleum power to muscle power gracefully if we want to preserve democracy. Paul Roberts wonders whether the coming change will be "peaceful and orderly or chaotic and violent because we waited too long to begin planning for it" (Roberts 2004).

What is the carrying capacity of the nation? Is it 100 million (Pimentel 1991) or 250 million (Smil 2000)? Whatever carrying capacity is decided upon, pass legislation to drastically lower immigration and encourage one child families until America reaches this number. Or we can let resource wars, hunger, disease, extreme weather, rising oceans, and social chaos legislate the outcome.

Do you want to eat or drive? Even without growing food for biofuels, crop production per capita is going to go down as population keeps increasing, fossil fuel energy decreases, topsoil loss continues, and aquifers deplete, especially the Ogallala (Opie 2000). Where will the money come from to buy imported oil and natural gas if we don’t have food to export?

There is no such thing as "waste" biomass. As we go down the energy ladder, plants will increasingly be needed to stabilize climate, provide food, medicine, shelter, furniture, heat, light, cooking fuel, clothing, etc.

Biofuels are a threat to the long-term national security of our nation. Is Dr. Strangelove in charge, with a plan to solve defense worries by creating a country that’s such a salty polluted desert, no one would want to invade us? Why is Dr. Strangelove spending the last bits of energy in Uncle Sam’s pocket on moonshine? Perhaps he’s thinking that we’re all going to need it, and the way things are going, he’s probably right.


Appendix: Department of Energy Biofuel Roadmap Barriers
This is a partial summary of biofuel barriers from Department of Energy. Unless otherwise footnoted, the problems with biomass fuel production are from the Multi Year Program Plan DOE Biomass Plan or Roadmap for Agriculture Biomass Feedstock Supply in the United States. (DOE Biomass Plan, DOE Feedstock Roadmap).



Resource and Sustainability Barriers
1) Biomass feedstock will ultimately be limited by finite amounts of land and water
2) Biomass production may not be sustainable because of impacts on soil compaction, erosion, carbon, and nutrition.
3) Nor is it clear that perennial energy crops are sustainable, since not enough is known about their water and fertilizer needs, harvesting impacts on the soil, etc.
4) Farmers are concerned about the long-term effects on soil, crop productivity, and the return on investment when collecting residues.
5) The effects of biomass feedstock production on water flows and water quality are unknown
6) The risks of impact on biodiversity and public lands haven’t been assessed.

Economic Barriers (or Investors Aren’t Stupid)
1) Biomass can’t compete economically with fossil fuels in transportation, chemicals, or electrical generation.
2) There aren’t any credible data on price, location, quality and quantity of biomass.
3) Genetically-modified energy crops worry investors because they may create risks to native populations of related species and affect the value of the grain.
4) Biomass is inherently more expensive than fossil fuel refineries because
a) Biomass is of such low density that it can’t be transported over large distances economically. Yet analysis has shown that biorefineries need to be large to be economically attractive – it will be difficult to find enough biomass close to the refinery to be delivered economically.
b) Biomass feedstock amounts are unpredictable since unknown quantities will be lost to extreme weather, sold to non-biofuel businesses, rot or combust in storage, or by used by farmers to improve their soil.
c) Ethanol can’t be delivered in pipelines due to likely water contamination. Delivery by truck, barge, and rail is more expensive. Ethanol is a hazardous commodity which adds to its transportation cost and handling.
d) Biomass varies so widely in physical and chemical composition, size, shape, moisture levels, and density that it’s difficult and expensive to supply, store, and process.
e) The capital and operating costs are high to bale, stack, palletize, and transport residues
f) Biomass is more geographically dispersed, and in much more ecologically sensitive areas than fossil resources.
g) The synthesis gas produced has potentially higher levels of tars and particulates than fossil fuels.
h) Biomass plants can’t benefit from the same large-scale cost savings of oil refineries because biomass is too dispersed and of low density.
5) Consumers won’t buy ethanol because it costs more than gasoline and contains 34% less energy per gallon. Consumer reports wrote they got the lowest fuel mileage in recent years from ethanol due to its low energy content compared to gasoline, effectively making ethanol $3.99 per gallon. Worse yet, automakers are getting fuel-economy credits for every E85 burning vehicle they sell, which lowers the overall mileage of auto fleets, which increases the amount of oil used and lessens energy independence. (Consumer Reports)

Equipment and Storage Barriers
1) There are no harvesting machines to harvest the wide range of residue from different crops, or to selectively harvest components of corn stover.
2) Current biomass harvesting and collection methods can’t handle the many millions of tons of biomass that need to be collected.
3) How to store huge amounts of dry biomass hasn’t been figured out.
4) No one knows how to store and handle vast quantities of different kinds of wet biomass. You can lose it all since it’s prone to spoiling, rotting, and spontaneous combustion

Preprocessing Barriers
1) We don’t even know what the optimum properties of biomass to produce biofuels are, let alone have instruments to measure these unknown qualities.
2) Incoming biomass has impurities that have to be gotten out before grinding, compacting, and blending, or you may damage equipment and foul chemical and biological processes downstream.
3) Harvest season for crops can be so short that it will be difficult to find the time to harvest cellulosic biomass and pre-process and store a year of feedstock stably.
4) Cellulosic biomass needs to be pretreated so that it’s easier for enzymes to break down. Biomass has evolved for hundreds of millions of years to avoid chemical and biological degradation. How to overcome this reluctance isn’t well enough understood yet to design efficient and cost-effective pre-treatments.
5) Pretreatment reactors are made of expensive materials to resist acid and alkalis at high temperatures for long periods. Cheaper reactors or low acid/alkali biomass is needed.
6) To create value added products, ways to biologically, chemically, and mechanically split components off (fractionate) need to be figured out.
7) Corn mash needs to be thoroughly sterilized before microorganisms are added, or a bad batch may ensue. Bad batches pollute waterways if improperly disposed of. (Patzek Dec 2006).

Cellulosic Ethanol Showstoppers
1) The enzymes used in cellulosic biomass production are too expensive.
2) An enzyme that breaks down cellulose must be found that isn’t disabled by high heat or ethanol and other end-products, and other low cost enzymes for specific tasks in other processes are needed. 3) If these enzymes are found, then cheap methods to remove the impurities generated are needed. Impurities like acids, phenols, alkalis, and salts inhibit fermentation and can poison chemical catalysts.
4) Catalysts for hydrogenation, hydrgenolysis, dehydration, upgrading pyrolysis oils, and oxidation steps are essential to succeeding in producing chemicals, materials, and transportation fuels. These catalysts must be cheap, long-lasting, work well in fouled environments, and be 90% selective.
5) Ethanol production needs major improvements in finding robust organisms that utilize all sugars efficiently in impure environments.
6) Key to making the process economic are cheap, efficient fermentation organisms that can produce chemicals and materials. Wald writes that the bacteria scientists are trying to tame come from the guts of termites, and they’re much harder to domesticate than yeast was. Nor have we yet convinced "them to multiply inside the unfamiliar confines of a 2,000-gallon stainless-steel tank" or "control their activity in the industrial-scale quantities needed" (Wald 2007).
7) Efficient aerobic fermentation organisms to lower capital fermentation costs.
8) Fermentation organisms that can make 95% pure fermentation products.
9) Cheap ways of removing impurities generated in fermentation and other steps are essential since the costs now are far too high.

References
Al-Kaisi, Mahdi. July 24, 2000. Soil Erosion: An agricultural production challenge. Integrated Crop Management. Iowa State University.
Al-Kaisi, Mahdi. 2001. Impact of Tillage and Crop Rotation Systems on Soil Carbon Sequestration. Iowa State University.
Al-Kaisi, Mahdi. May 2001. Soil Erosion, Crop Productivity and Cultural Practices. Iowa State Univ.
Andrews, S. Feb 22, 2006. Crop Residue Removal for Biomass Energy Production: Effects on Soils and Recommendations. USDA-Natural Resource Conservation Service.
Atchison, J. et al. 2004. Innovative methods for corn stover collecting, handling, storing and transporting. NREL.
Badger, P. 2002. Processing Cost Analysis for Biomass Feedstocks. DOE/ EERE.
Bain, R.; Amos, W. March 2003. Biopower Technical Assessment: State of the Industry and Technology. National Renewable Energy Laboratory NREL/TP-510-33123
Ball, B. C. et al. 2005. The role of crop rotations in determining soil structure and crop growth conditions. Canadian Journal of Soil Science 85(5):557-577.
Barrionuevo, A. 8 Oct 2006. A Bet on Ethanol, With a Convert at the Helm. New York Times.
Barrionuevo, A. 23 Jan 2007. The Energy Challenge. Springtime for Ethanol. New York Times.
Barta, P. et al. Dec 5, 2006. As Alternative Energy Heats Up, Environmental Concerns Grow. Crop of Renewable 'Biofuels' Could Have Drawbacks. Wall Street Journal.
Benemann, J; Augenstein, D. August 16, 2006. Whither Cellulosic Ethanol? The Oil Drum.
Benton, M. 2003. When Life Nearly Died. The greatest mass extinction of all time. Thames & Hudson.
Birger, J. Oct 31, 2006, McCain's farm flip. The senator has been a critic of ethanol. That doesn't play in Iowa. So the Straight Talk Express has taken a detour. Fortune.
Birrell, S. et al. 2006. Biomass Harvesting, Transportation and Logistics. Growing the Bioeconomy conference. Iowa State University.
Blanco-Canqui, H.; et al. 2006. Rapid Changes in Soil Carbon and structural properties due to stover removal from no-till corn plots. Soil Science. Volume 171(6) 468-482.
BOA (Board on Agriculture). 1986. Soil Conservation: An Assessment of the National Resources Inventory, Volume 2. National Academies Press.
Borgman, D. 4 Jan 2007. John Deere bio-fuels white paper. Agriculture, bio-fuels and striving for greater energy independence. John Deere Company.
Bright, C. 1998. Life Out of Bounds. Bioinvasion in a Borderless World. W.W.Norton.
Bucknell III, H. 1981. Energy and the National Defense. University Press of Kentucky.
Calviño, V; et al. 2003. Corn Maize Yield as Affected by Water Availability, Soil Depth, and Crop Management. Agronomy Journal 95:275–281
Clayton, Mark. 23 Mar 2006. Carbon cloud over a green fuel. An Iowa corn refinery, open since December, uses 300 tons of coal a day to make ethanol. Christian Science Monitor.
Consumer Reports. Oct 2006. The ethanol myth: Consumer Reports' E85 tests show that you’ll get cleaner emissions but poorer fuel economy ... if you can find it.
Crawford, D. Feb 2006. Natural gas has eight years left. Republic News.
Cruse, R. et al. 2006. Water Quality and Water Quantity Are they significant issues in the bioeconomy? Growing the Bioeconomy conference. Iowa State University.
Deluca, T. 23 June 2006. Letters. Science, Vol 312 p 1743-1744.
Diamond, J. 2004. Collapse: How Societies Choose to Fail or Succeed. Viking.
Dias De Oliveira, M. et al. July 2005. Ethanol as Fuel: Energy, Carbon Dioxide Balances, and Ecological Footprint. BioScience 55, 593.
DOE Billion Ton Vision. April 2005. Biomass as feedstock for a Bioenergy and Bioproducts Industry: The technical feasibility of a billion-ton annual supply. USDA.
DOE 1980. Standby Gasoline Rationing Plan. U.S. Department of Energy Economic Regulatory Administration Office of Regulations and Emergency Planning
DOE Biomass Plan. 31 Aug 2005. Multi Year Program Plan 2007-2012. U.S.
Department of Energy. Office of the Biomass Program. Energy Efficiency and Renewable Energy.
DOE Feedstock Roadmap. Nov 2003. Roadmap for Agriculture Biomass Feedstock Supply in the United States. DOE Office of Energy Efficiency & Renewable Energy Biomass Program.
FAO. 2004. Crop Water Information. Food and Agriculture Organization of the United Nations.
Farrell, et. al. Jan 27, 2006. Ethanol Can Contribute to Energy and Environmental Goals. Science Vol 311 506-508.
Fisher, D. et al. Apr 2001. The Nitrogen Bomb. Discover magazine.
Franzleubbers, A. J.; et al. 2006. Agricultural Exhaust: A Reason to Invest in Soil. Journal of Soil and Water Conservation. Vol.61-3; 98-101
Gerard, Jack. 2006. Annual Meeting American Chemistry Council, Louisiana Chemical Industry Alliance
Giampietro, M. et al. 1997. Feasibility of large-scale biofuel production. BioScience 47(9): 587-600.
Glennon, R. 2002. Water Follies. Groundwater Pumping and the Fate of America’s Fresh Waters. Island Press.
Grandy, A. S.; et al. 2006 Do Productivity and Environmental Trade-offs Justify Periodically Cultivating No-till Cropping Systems? Agronomy Journa.98:1377–1383.
Hall, C, et al. 20 Nov 2003. Hydrocarbons and the Evolution of Human Culture. Nature 426:318–22.
Haney, D. 2006. Emerging Trends: Transportation Needs for Biofuels, Bioproducts, and the Bioeconomy. Biobased Industry Outlook Conference. Ames, Iowa.
Harte, John. Professor of Energy and Resources, UC Berkeley. Private communication.
Heller, M. et al. 2000. Life-Cycle Based Sustainability Indicators for Assessment of the U.S. Food System. University of Michigan.
Hightower, J. 1978. Hard Tomatoes, Hard Times: A report of the Agribusiness Accountability Project on the Failure of America's Land Grant College Complex. Schenkman Books.
Hirsch, R. 2005. Peaking of World Oil Production: Impacts, Mitigation, & Risk Management. DOE NETL.
Huber, P. 10 Apr 2006. The Forest Killers. Forbes.
Jackson, W et al. 1980. Impacts on the Land in the New Age of Limits. Land report #9:20.
Jacobson, Mark. May 9, 2006. Addressing Global Warming, Air Pollution Health Damage, and Long-Term Energy Needs Simultaneously. Dept of Civil & Environmental Engineering, Stanford University.
John Deere. 2006. Biodiesel fuel in John Deer Tractors. Services and Support.
Johnson, J; et al. 2004. Characterization of Soil Amended with the By-Product of Corn Stover Fermentation. Soil Sci. Soc. Am. J. 68:139–147.
Johnson. J.M.F, et al. 2005. Greenhouse gas contributions and mitigation potential of agriculture in the central USA. Soil and Tillage Research 83:73-94.
Johnson, J. D. et al. 2006. A matter of balance: Conservation & renewable energy. J. Soil Water Cons. 61:120A-125A.
Jones, T. Oct 2006. The Scoop On Dirt Why We Should all Worship the Ground We Walk On.
Emagazine.com
Jordan, J. et al. 2 Jul 2006. The False Hope of Biofuels. For Energy and Environmental Reasons, Ethanol Will Never Replace Gasoline. Washington Post.
Karlen, D. 2006. Crop Rotation Effects on Soil Quality at Three Northern Corn/Soybean Belt Locations. Agronomy Journal 98: 484–495.
Kirschenmann, F. 6 Feb 2007. Potential for a New Generation of Biodiversity in Agroecosystems of the Future. Agron J 99:373-376
Klee, G. 1991. Conservation of Natural Resources. Prentice Hall.
Lal, R. 1998. Soil erosion impact on agronomic productivity and environmental quality. Critical Reviews in Plant Sciences, 17: 319-464.
Lavelle, M. 4 Feb 2007. Is Ethanol the Answer? Politically it's a winner. But experts aren't sure ethanol can deliver on its promise. U.S. News & World Report.
Lee, J.L. et al. 1996. Sensitivity of the US Corn Belt to climate change and elevated CO2: II. Soil erosion and organic carbon. Agric. Systems 52: 503–521.
Lilley, Sasha. 1 Jun 2006. Green Fuel’s Dirty Secret.
Corpwatch.com
Lowdermilk, W. 1948. Conquest of the Land through Seven Thousand years. USDA-SCS.
Luoma J. 1999. The Hidden Forest. The biography of an ecosystem. Henry Holt.
Lynas, M. 2007. Six Degrees: Our Future on a Hotter Planet. HarperCollins.
Mann, L., et al. 2002. Potential environmental effects of corn (Zea mays L.) stover removal with emphasis on soil organic matter and erosion.Agriculture, Ecosystems and Environment, 89: 149-166.
McAloon, A et al. Oct 2000. Determining the cost of producing ethanol from cornstarch and lignocellulosic feedstocks. NREL.
McCain, John. November 2003. Statement of Senator McCain on the Energy Bill: Press Release. Meadows, D. et al. 2004. The Limits to Growth: The 30 year update. Chelsea Green.
Miranowski, J. Feb 1984. Impacts of Productivity Loss on Crop Production and
Management in a Dynamic Economic Model. American Journal of Agricultural Economics, Vol. 66/#1:61-71.
Monbiot, George. 6 Dec 2005. The most destructive crop on earth is no solution to the energy crisis. The Guardian.
Montenegro, M. 4 Dec 2006. The Big Three. The numbers behind ethanol, cellulosic ethanol, and biodiesel in the U.S. Grist.
Nelson, R.G. 2002. Resource assessment and removal analysis for corn stover and wheat straw in the Eastern and Midwestern United States – rainfall and wind-induced soil erosion methodology. Biomass and Bioenergy 22: 349-363.
NRCS. April 2004. National Resources Inventory 2002. USDA
NCRS 2006. Conservation Resource Brief. Feb 2006. Soil Erosion. United States Dept of Agriculture, Natural Resources Conservation Service. Land use.
Odum, Howard T. 1996. Environmental Accounting. EMERGY and Environmental Decision Making. John Wiley & Sons.
Olmstead, J. 5 Dec 2006. What About the Land? A look at the impacts of biofuels production, in the U.S. and the world. Grist.
Olson, K. et al. 1988. Effects of soil erosion on corn yields of seven Illinois soils. Journal of Production Agriculture. Vol 1, 13-19.
O'Neal, M. et al. 2005. Climate change impacts on soil erosion in Midwest United States with changes In crop management. Catena 61:165-184.
Opie, J. 2000. Ogallala: Water for a Dry Land. University of Nebraska Press.
Pate, Dennis. June 10, 2004. May Rains Cause Severe Erosion in Iowa. Natural Resources Conservation Service.
Patzek, T. The Earth, Energy, and Agriculture. June 2006. Climate Change and the Future of the American West. Boulder, Colorado
Patzek, T. Nov 5, 2006. Why cellulosic ethanol will not save us.
Venturebeat.com
Patzek, T. 26 Jun 2006. The Real Biofuels Cycles.Online supporting material for Science Vol 312: 1747.
Patzek, T. Dec 2006. A Statistical Analysis of the Theoretical Yield of Ethanol from Corn Starch. Natural Resources Research, Vol 15/4.
Perlack, R., et al. 2002. Assessment of options for the collection, handling, and transport of corn stover. U.S. DOE, EERE.
Perlin, J. 1991. A Forest Journey: The Role of Wood in the Development of Civilization. Harvard University Press
Pimentel, D. 1995. Environmental and Economic Costs of Soil Erosion and Conservation Benefits. Science. Vol 267. 1117-1123.
Pimentel, D., Kounang, N. 1998. Ecology of Soil Erosion in Ecosystems. Ecosystem 1: 416-426.
Pimentel, D. et al. 1991. Land, Energy, and Water. The Constraints Governing Ideal U.S. Population Size. Negative Population Growth
Pimentel D. 2003. Ethanol fuels: Energy balance, economics and environmental impacts are negative. Natural Resources Research. 12:127–134.
Pimentel, D. et al. March 2005. Ethanol Production Using Corn, Switchgrass, and Wood; Biodiesel Production Using Soybean and Sunflower. Natural Resources Research, Vol 14:1
Pimentel, David. Feb 2006. Soil Erosion: A Food and Environmental Threat. Journal Environment, Development and Sustainability.
Pimentel, D. et al. Nov 2006. Editorial: Green Plants, Fossil Fuels, and Now Biofuels. American Institute of Biological Sciences.
Pollan, M. 2006. The Omnivore’s Dilemma. Penguin Press.
Ponting, C. 1993. A Green History of the World: The Environment and the Collapse of Great Civilizations. Penguin Books.
Power,
J.et al. 1998. Residual effects of crop residues on grain production and selected soil properties. Soil Science Society of America Journal 62: 1393-1397.
Power, J. et al. 1988. Role of crop residue management in nitrogen cycling and use. Cropping Strategies for Efficient Use of Water and Nitrogen. ASA Special Publication 51.
Powers, S. May 2005. Quantifying Cradle-to-Farm Gate Life-Cycle Impacts Associated with Fertilizer Used for Corn, Soybean, and Stover Production. NREL.
Raghu, S. et al. 22 Sep 2006. Adding Biofuels to the Invasive Species Fire? Science: 1742
Reynolds, R. Jan 15, 2002. Infrastructure requirements for an expanded fuel ethanol industry. Oak Ridge National Laboratory Ethanol Project.
Reijnders, L. 2006. Conditions for the sustainability of biomass based fuel use. Energy Policy 34:863–876
Roberts, P. 2004. The End of Oil. Houghton Mifflin.
Rohter, L. Dec 12, 2004. South America Seeks to Fill the World's Table. New York Times
Rorabaugh, W.J. 1979. The Alcoholic Republic: An American Tradition. Oxford University Press. 74-89.
Ruth, M. et al. May 4, 2003. The Effect of Corn Stover Composition on Ethanol Process Economics. NREL
Sadras, V. 2001. Quantification of Grain Yield Response to Soil Depth in Soybean, Maize, Sunflower, and Wheat. Agronomy Journal 93:577-583.
ScienceDaily. Mar 8, 2007. Petroleum Biofuels: An Advisable Strategy? Univ Autonoma de Barcelona.
Sampson, R. 1981. Farmland or Wasteland. A time to choose. Overcoming the threat to America’s farm and food future. Rodale Press.
Schertz, D. et al. 1989. Effect of past soil erosion on crop productivity in Indiana. Journal of Soil and Water Conservation. Vol 44, no 6. 604-608.
Shapouri, H. et al. 2002. The Energy Balance of Corn Ethanol: an update. USDA Agricultural economic report 813
Sheehan, J. et al. 2003. Energy and Environmental Aspects of Using Corn Stover for Fuel Ethanol. Journal of Industrial Ecology, Vol 7 3-4: 117-146.
Shurson, J., et al. 2003. Value and use of ‘new generation’ distiller’s dried grains with solubles in swine diets. Dept of Animal Science, University of Minnesota, St. Paul, Minnesota. Alltech 19th International Feed Industry Symposioum Proceedings.
Sluiter, A. et al. 2000. Compositional variability among corn stover samples. NREL.
Smil, V. 2000. Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. MIT Press.
Sullivan, Preston. May 2004. Sustainable Soil management. Soil Systems Guide. ATTRA.
Sundquist, B. 6 May 2005. Topsoil Loss -- Causes, Effects, and Implications: A Global Perspective. Chapter 3
SWCS (Soil and Water Conservation Society). 2003. Conservation implications of climate change: Soil erosion and runoff from cropland. Soil and Water Conservation Society, Ankeny, IA. Tegtmeier, E, et al. 2004. External Costs of Agricultural Production in the United States. International Journal of Agricultural Sustainability Vol 2/1
Tilman, D. et al. 8 Dec 2006. Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science. Vol 314 no 5805:1598 - 1600
Tomson, B. 8 Feb 2007. For Ethanol, U.S. May Boost Corn Acreage. Wall Street Journal.
Trenkle, A. 2006. Integration of Animal Agriculture with the Bioeconomy. Department of Animal Science, Iowa State University
Troeh, F, et al. 2005. Soils and Soil Fertility, 6th edition. Blackwell Publishing.
Ulgiati, S. 2001. A comprehensive energy and economic assessment of biofuels: When "green" is not enough. Critical Reviews in Plant Sciences 20(1): 71-106.
USDA-ARS. Wind Erosion Research.
USDA ERS (Economic Research Service). Fertilizer Use. U.S. Fertilizer Imports/Exports
Vogel, K; et al. 2002. Switchgrass Biomass Production in the Midwest USA:Harvest and Nitrogen Management. Agronomy Journal 94:413–420.
Wall Street Journal Editorial. Apr 15, 2002. A Stealth Gas Tax. Wall Street Journal.
Ward, M. Jan 2007. Is Ethanol for the Long Haul? Scientific American.
Ward, P. 18 Sep 2006. Impact from the Deep. Strangling heat and gases emanating from the earth and sea, not asteroids, most likely caused several ancient mass extinctions. Could the same killer- greenhouse conditions build once again? Scientific American.
Wardle, D. 2004. Ecological linkages between aboveground and belowground biota. Science 304:1629-1633.
Washington Post Editorial. Apr 16, 2002. Ethanol’s Ambitions. Washington Post.
Whitney, G. 1994. From Coastal Wilderness to Fruited Plain. Cambridge University Press.
Wilhelm, W. et al. Jan-Feb 2004. Crop and Soil Productivity Response to Corn Residue Removal: A Literature Review. Agronomy Journal. Vol 96 No 1. 1-17
Williams, M. 2003. Deforesting the Earth: from prehistory to global crisis. University of Chicago Press.
Wolfe, D. 2001. Tales from the Underground. A Natural History of Subterranean Life. Perseus Publishing.
Wu, L. 1998. Screening Study for Utilizing Feedstocks Grown on CRP Lands in a Biomass to Ethanol Production Facility. National Renewable Energy Laboratory.
WWF (World Wildlife Fund). July 2005. WWF Action for Sustainable Sugar.
Yates, A. et al. 2006. No-till cultivation improves stream ecosystem quality. Journal of Soil and Water Conservation. Vol 61:1 14-19.
Yacobucci, B. 2006. Fuel Ethanol: Background and Public Policy Issues. CRS Report for Congress.

~~~~~~~~~~~~~~~ Editorial Notes ~~~~~~~~~~~~~~~


Culture Change editor Jan Lundberg writes:
There are many serious problems with biofuels, especially on a massive scale, and it appears from this report that they cannot be surmounted. So let the truth of Alice Friedemann’s meticulous and incisive diligence wash over you and rid you of any confusion or false hopes. The absurdity and destructiveness of large scale biofuels are a chance for people to eventually even reject the internal combustion engine and energy waste in general. One can also hazard from this report that bioplastics, as well, cannot make it in a big way.

The author looks ahead to post-petroleum living with considered conclusions:
"Biofuels have yet to be proven viable, and mechanization may not be a great strategy in a world of declining energy." And, "…only a small amount of biomass (is) unspoken for" by today’s essential economic and ecological activities. To top it off, she points out, "Crop production is reduced when residues are removed from the soil. Why would farmers want to sell their residues?" Here’s an Oh-god-she-nailed-it zinger: "As prices of fertilizer inexorably rise due to natural gas depletion, it will be cheaper to return residues to the soil than to buy fertilizer." Looking further along than most of us, Alice has among her conclusions: "It’s time to start increasing horse and oxen numbers, which will leave even less biomass for biorefineries."

BA:
When researching biofuels, I was surprised to see that soil had scarcely been considered. Alice has done a mammoth job in collecting soil-related and other arguments against biofuels.

Read more...
advanced web statistics